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A theory of basic commutators is developed here which applies to polynilpotent series and related
subgroups of a free group in much the same way as the conventional theory applies to the lower
central series. The intention is to provide a theory of general application, however in §§ 17 and 19
new group-theoretic theorems are proved which involve the entire theory and illustrate its uses.

%
S A

p—d
;C — INTRODUCTIONT

= The conventional theory of basic commutators may be considered to be an investigation of

= y y g
= the properties of the lower central series y,(F): ¢ = 1,2, ... of an absolutely free group ¥, or
=O alternatively of the properties of the corresponding factor groups, which are the free
TO y prop P g group

nilpotent groups of various classes:

=w p group

Flyen(F) = F(R,).
Suppose that G is a group generated by a subset ¢. Then a set of ‘ formal expressions’ may
be constructed by using the elements of ¢, the symbol 1 and the operations of inversion,

1 Throughout this paper certain symbols in more or less common use will be employed without formal
definition. For the reader’s convenience these are collected in appendix II, together with all terms and
symbols defined in the text.

PHILOSOPHICAL
TRANSACTIONS
OF

Vor.264. A.1152. (Price £1.16s.6d.; U.S.$4.75) 45 [Published 8 May 1969

[ ,Q
o) Y
The Royal Society is collaborating with JSTOR to digitize, preserve, and extend access to @%I%

Philosophical Transactions of the Royal Society of London. Series A, Mathematical and Physical Sciences. IINOIY
WWWw.jstor.org


http://rsta.royalsocietypublishing.org/

) §
C

/

S

THE ROYAL A
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

I §
yas

THE ROYAL A
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

Downloaded from rsta.royalsocietypublishing.org

344 M. A. WARD

multiplication and commutation. Each of these formal expressions will then represent
a unique element of G in the obvious way. Certain formal expressions, known as basic
commutators of weight ¢ are defined for positive integers ¢ and well-ordered by recursion over ¢
as follows:

(i) The basic commutators of weight 1 are the elements of . They may be well-ordered
in any way.

(i) Assuming that¢ > 1 and that the basic commutators of weight < ¢ have been defined
and ordered, the basic commutators of weight ¢ are expressions of the form [x,y] where
x¥ and y are basic commutators of weights r and s respectively, r+s =¢, ¥ >y and, if
x =[x, %,], then x, <y. The well-order may be extended to the basic commutators of
weight ¢ in any way so that they follow the commutators of smaller weight.

The following facts have been established:

Fact 1. A collecting process is defined, by means of which a formal expression for an element
in F(N,), where ¢ is a free generating set for this group, can be transformed into a particular
type of expression known as a basic product of the form 1 or 641642 ... bfix where b, b, ..., b, are
basic commutators of weight < ¢, b; < b, < ... < b, and f,, /s, ..., f; are non-zero integers.
The basic product represents the same element of the group as did the original expression.

Fuact 2. The representation of a particular element of £(t,) in this form is unique.

Fact 3. y,(F)[y, . (F) ~y,(F(I,)) is a free Abelian group, for which those elements
represented by basic commutators of weight ¢ constitute a free basis.

Fact 4. The upper and lower central series of //(Jt,) coincide. More specifically, provided
h kof Flis > 1
feram ot = b CFDR)) = Vompn(FR,)).

Fact 5. The lower central series of the absolutely free group F has trivial intersection:

N 7(F) = {1},

In other words, £ is residually nilpotent.

Fact 6. Witt’s formula. When the number 7 of generators is finite, the number of basic
commutators of weight ¢ is also finite and is the number

1
; z ﬂ(?’) 70/7)

rle

where y is the Mobius function, defined for any positive integer 7: x(r) = 0 if there exists
p > 1 such that p%|r, u(r) = (—1)° otherwise, where s is the number of distinct primes
dividing r.

The history of the subject can be covered briefly. The theory was initiated by P. Hall
(1934) in a paper concerned with p-groups. Here the notion of basic commutator was
introduced and the collecting process investigated (fact 1), however, the question of unique-
ness was not treated in this paper. Witt (1937) showed that the whole question could be con-
verted into an equivalent one concerning free Lie rings, and also produced the Witt formula
(fact 6). Magnus (1935, 1937), also working in terms of free Lie rings, introduced the
so-called Magnus Ring in terms of which the residual nilpotence of absolutely free groups
(fact 5) was proved. Finally, M. Hall Jr (1950) proved the Basis Theorem (facts 2 and 3).
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BASIC COMMUTATORS 345

"The work reported in this paper arose originally from the desire to prove the results of § 19
and more generally from the feeling that it should be possible to modify the theory of basic
commutators as just described to permit the properties of free polynilpotent groups to be
studied in the same way.

The idea of weight of a commutator is well known. This may be extended to the idea of
weight of an expression (definition 1-3) and then the terms of the lower central series of
a group G' ' may be defined thus: an element of G belongs to y,(G) if and only if it may be
written as an expression of weight > ¢. This is possibly not a familiar way of defining the
lower central series, and is made precise in definition 3-2 and lemma 5-2.

Here the idea of weight is generalized to that of skape and shape range. Then, for a given
shape range W, shape subgroups W, (G) of a group G, consisting of all elements of shape > «
are defined. The generalization of weight to shape is the crux of this theory: for, just as the
lower central series may be defined in terms of weight and then the conventional theory of
basic commutators investigates the properties of this series, so the subgroups W, (G) are
defined in terms of shape and the theory to be described here investigates the properties of
these subgroups. But the shape range I/ may be chosen so that these subgroups contain
among them the terms of polycentral series. While the shape range ¥ may be chosen so that
subgroups not directly connected with polycentral series may be investigated, so that the
early part of this paper will be slightly more general than the abstract suggests, the prime
consideration throughout will be the study of polynilpotent groups.

In chapter I the idea of a shape range I/ and its associated shape ¢ are introduced. In
terms of this the basic commutators are then defined. The most important part of this
chapter consists of a proof that the number of basic commutators of a given weight, for a
given number of generators, is independent of the shape range chosen to define them.

Chapter II develops the collecting process which, together with the main result of
chapter I, provides the basis theorems. In this chapter the foregoing theory is applied to Lie
rings and, as might be expected, the results are pleasingly straightforward.

In chapter III the shapes used to investigate the properties of free polynilpotent groups,
the polyweights, are defined and an important result, namely that the corresponding factor
groups are residually nilpotent, is proved.

In chapter IV the centralizers of shape subgroups modulo others are calculated. This
allows the calculation of the upper central series of free groups of the varieties B, A N,
and P v N, where P is any polynilpotent variety.

During the development of the theory the results analogous to facts 1 to 6 above will be
stated and proved.

While this paper was being prepared, Goréakov (1967) published some related results.
He defines multinilpotent (given in the translated summary as multipolynilpotent) varieties
to be those formed from the nilpotent varieties by a finite number of applications of the
operations of multiplication and intersection and gives the following theorem: Let 4 be
a free group of some multinilpotent variety. Then

N 7,(4) = {1}

and y,(4)/7,.1(4) is a free Abelian group for each positive integer n. For the varieties
45-2
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346 M. A. WARD

defined in this paper by polyweights, these results are contained in theorems 15-1 and
9-1 (D) respectively.

The conventional theory of basic commutators concerns itself much of the time with
formal expressions: not so much the elements of a group themselves as the way they are
written down. In the present theory it will be found that more and more emphasis is placed
on this aspect and that group-theoretic results, though the primary object of this study,
appear infrequently. In order to avoid this essentially metamathematical approach, formal
expressions for elements of a group are here replaced by elements of a free algebra. This
algebrais chosen so as to be anarchic enough for us to regard (intuitively) the elements of the
algebra as being in one-to-one correspondence with the possible formal expressions for
elements in the group.

CuarTER I. BASIC COMMUTATORS
1. The algebra of expressions

DEerFINITION 1-1. Let G = {8}, ., be some set indexed by the ordinals less than some ordinal 7, the
indexing being one-lo-ome. Form the algebra A = A, generated freely by the set G with operator
domain £ = {e,v, u, ¥} where ¢ is a nullary operator (the identity), v is a unary operator (inversion),
uand y are binary operators (multiplication and commutation respectively), the only law being
that u is associative.

A more conventional notation will be used for the effect of the operators on A as follows:

¢=1,
Xy =x"1
Xyp = Xy Sorall x,yeA.
xyy = [%,¥]

Parentheses will be used in connexion with the operations of inversion and multiplication in accordance
with the usual conventions. A *left-normed’ convention will be used in connexion with the operation of
commutation, that is, [a,b, c] = [[a, b], ¢] and so on. The set G will be considered to be a subset of A
in the usual way. The elements of A will be called expressions and A itself the algebra of expressions.
It should be remarked that the operators ¢ and v are not bona fide identity and inversion
operators with respect to u, since the associative law of multiplication is the only law of A.
An elementary property of such an algebra is that, to each a€ A, there exists a uniquely
defined positive integer which will here be called the Aeight of a and denoted ht (a), which is
defined by its properties:
(i) ht(l) =1andifg,e G then ht(g,) =1,
(ii) ht(a=!) =ht(a)+1, and
(ii1) ht(ab) = ht([a,b]) = ht(a) +ht (b) +1.
Roughly speaking, the height of an expression is the number of symbols other than
parentheses required to write it in terms of the generators G and the operators ¢, v, # and y.
It will be useful to have the following rather artificial definition of exponentiation of an
expression.

DEriNtTION 1-2. Let n be an integer and X € A. Then X" is defined recursively
(i) x0=1,
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BASIC COMMUTATORS 347

(i) x!=x and X~ is as described in definition 1-1,

(i) forn>1, X" =x""X and X" = x~ (- Dx-1,
DEFINITION 1-3. Let N~ denote the set of positive integers with an extra element oo adjoined and the
usual addition and order extended to encompass oo by

00 +n = n+00 =00-+00 =00 o
1 Sor any positive integer n.
n <o J

The mapping wt: A — N~ s defined recursively over the height of expressions by
(1) wt(l) =c0, g,eG=wt(g;) =1,
(i) wt(x7!) = wt(x),
(iii) wt(xy) = min{wt (X), wt (y)}, and
(iv) wt([x,¥]) = wt (X) +wt(y).
For each expression X, wt (X) will be called the weight of X.

DEriNITION 1-4. The closure (in A) of G under the operation of commutation alone is the set C of
commutators.

For any expression Xe A, a subset & (X) of G, the commutator set of X, is defined recursively by

() E(1)—2; 8,<G = E(g,) - {&}
(i) E(x) = E(x),

(i) E(xy) = &5(x) v E(y),

(iv) E([x,¥]) = {[a,b]:ac E(x), be E(y)}.

If 2 15 any property defined on the set of commutators and X is any expression in A then X has P
essentially if every member of Z(X) has 2.

Clearly, if ¢ is a commutator then either wt (¢) = 1 and ¢ € G or else wt (¢) > 1 and there
exist unique X,y € A, both of weight less than that of ¢, such that ¢ = [X, y]. A commutator
has a property Z essentially if and only if it has that property.

The emphasis throughout this study will be on groups, however some of the results will
apply to a more general class of algebra. This may be defined as follows.

DEerintTION 1-5. 4 describable algebra G = G, is one with the same operator domain Q as A
(definition 1-1) in which multiplication is associative. Except where otherwise stated the effects of the
operators on G will be written in the usual way: ¢ = 1, xv = x71, xypu = xy and xyy = [x,y]. If A and
B are two subalgebras of G then [ A, B] is the subalgebra generated by the set {[a,b]: ac A, be B}. An
ideal of G is a subalgebra A of G such that, if ac A and g€ G, then [a, gl € A and [g,a] € A.

The method whereby the elements of A describe the elements of such an algebra and so
supplant the notion of ‘formal expression’ is now made precise.

DErINITION 1-6. Let G be any describable algebra (or in particular a group) and suppose G is
generated by a set G = {g};.,. Let A be defined as in definition 1-1. Then the unique epimorphism
p: A —G for which g;p = g; (¢ < 1) will be called a description of G ; moreover, if G is a relatively
Sree algebra, freely generated by 4, then p will be called a free description.

2. Shape
DEerFintTION 2:1. A shape range us a quadruple (W, <,<, +) where W is a set, < and <
orders on W and + a binary algebraic operation (addition) on W satisfying:
(i) The order < (fully) well-orders W. W has a least element 1 and a greatest element co. The
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348 M. A. WARD

order < is a partial lattice order which implies < in the sense that o < f=>a < f. The meet and join
of wand f (with respect to <) will be denoted o A f and av [ respectively. The strict orders corresponding
to < and < will be written < and < respectively.

(ii) W is closed under addition and W —{co} us generated by 1 under addition. Addition is com-
mutative but not necessarily associative; a left-normed convention will be used: a+f+y = (a+f)+vy
and so on.

(iii) a,f400=a+f=+00, atow =00, a <ayandf 4 o0 =a,+f < ay+p.

(iv) a Foo=a<a+tf, o;<a, and [+ 00 =0+ <o,+p.

(V) a<f<y=y+ft+a=y+tatf<f+aty.

The orders < and < will be called the fine and coarse orders respectively.

I't will usually be possible to speak of the ‘shape range I/’ rather than the less convenient
‘shape range (W, <, <, +)’ without fear of confusion, for it will seldom be necessary to
consider more than one shape range structure on one underlying set.

LemMa 2-1. Let (W, <, <, +) be a shape range. Then so is (W, <, <,+).

Proof. It is sufficient to prove that the properties of < listed in definition 2-1 are also
properties of < ; that < is a partial lattice order which implies < is trivial, that

o+ =a<atf and a<pf<y=y+ft+oa=y+atf<ft+a+y
follow from the corresponding properties for < and that
a <ay, and f=F 0 =a+f<a,+f

is stated explicitly in the definition.

This proof shows that the lemma can be stated in an alternative form: if, throughout the
defining properties of a shape range, the coarse order is replaced by the fine one the resulting
propositions are true. This in turn implies a metatheorem:

If T s a theorem concerning a shape range (W, <, <, +) and this is translated into a new proposi-
tion T by replacing < whenever it appears by < and any expression defined in terms of < by one
defined similarly in terms of < then T’ is a theorem (true proposition).

DeFINITION 2-2. Let © and V" be two subsets of a shape range W. Then
1) O <Y if for every €V there exists ¢ € © such that ¢ < . If further there exists ¢ € O
such that y € V' = ¢ L ¢ then ® <.
(i) O+Wistheset{p+y:pec®,yec¥}
(i) v Wistheset{pvy:pe®,yec¥}

LeMMmA 2-2. With the notation of definition 2-2,
(1)  The relation < pre-orders the subsets of W. The set ®v Y has the property that, for any

subset X of W, >0V < X>® and >V

s0 the symbol v is appropriate. The relation < on the subsets of W is the corresponding strict relation.
(ii) Addition of subsets of W is commutative but not necessarily associative.
(i) ®+o =92 and @+{co} = {00}
(iv) If @, < @, and 'V 3} {0} then O, +¥< O, 4.
V) {8} < =g < v, B+ = G+ and (v 10} — (6 v 1.
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BASIC COMMUTATORS 349

Proof. This all follows immediately from definitions 2:1 and 2-2, except perhaps for
part (iv). Suppose then that ®, < ®, and ¥ % {c0}. Then, for each ¢,+ e ®,+¥ there
exists ¢, € O, such that ¢, < ¢, and then ¢, +ye @, +Vand ¢, +¢ < @+ . This proves that
O +Y < O,+W. But @, < D, so there exists ¢, O, such that ¢, e O, =~ ¢, }+ ¢,. There also
exists € ¥'such that y == co,soforany ¢, + ¢ € O, + W, ¢, + ¥ # ¢,+ ¥ by definition 2-1 (iv).

DerINITION 2:3. Let A be an algebra of expressions and W a shape range. The fine shape on A
associated with W is the mapping o: A—> W defined by its properties
(i) o(1) =00;8,eG=0(g,) =1.
(i) o(x™!) = o(x).
(iii) o(xy) = min{o(x), 0(y)}, where min is defined with respect to the fine order < on W.
(iv) o([%,¥]) = o(X)+0(y).
Corresponding to the coarse order is a coarse shape ¢: A— W defined by:
i) (1) =o00; 8,eG=0(g,) =1.
(ii)" o(x71) =(x).
(il)" o(xy) = o(x) A 6 (y).
(iv)" o([x,¥]) =0(x)+0(y)-
For each expression X € A, its shape set 2'(X)
)" 2Q)=2; 8,eG=2(g,)={1}.
(il)" Z(x7) = 2(x).
(iif)" 2(xy) = 2(x) u Z(y).
(iv)" 2([x,¥]) = 2(x)+2(y).
Comparison of the three main sections of this definition shows that for any commutator c,
o(c) = &(c) and 2(c) = {o(c)}. Further, comparison with definition 1-4 shows that, for any
expression X, 2(X) could be defined alternatively by

< W s defined by

X) = {o(c): ce E(x)}.
A simple induction over the height of X shows that 2'(x) is a finite set for any X € A, that ¢(X)
is the minimum member under the fine order < of X'(x) and &(x) is the meet of 2'(x) and
thus that ¢(x) < o(X).

Another easy consequence of this definition is that N~ (definition 1-3) or more precisely
(N-, <, <, +) isashape range and that wt: A— N~ is both the associated fine and coarse
shape. This verifies the remark made in the introduction that ‘shape’ is a generalization of
‘weight’. In view of results developed in the sequel it is of interest to observe that the only
possible order < for N~ for which (N-, <, <, +) isashape range is in fact < itself. When
N-is chosen as the shape range for any of the succeeding theorems it will be found that they
reduce to known ones from the conventional theory of basic commutators or to trivialities.
New group theoretic results must await the definition of polyweights in chapter I1I.

Both the fine and coarse shapes emerge as generalizations of weight and motivation for
their definitions may be stated informally as follows: the axioms for the fine shape extract
just those properties of weight necessary to make possible a definition of basic commutators
and collecting processes which will allow the theory outlined in the introduction to be
developed. The coarse order is chosen in such a way that it can utilize the basic com-
mutators and collecting processes of the fine order to produce an analogous but new set of
results. The justification for introducing the coarse order is that, in chapter III when a
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350 M. A. WARD

constructive definition of certain shapes is given, the subgroups corresponding to the coarse
order turn out to be of more immediate general interest than those corresponding to the fine
order and in consequence the group-theoretic results follow suit.

The development of analogous theories for the fine and coarse orders and the order
defined on subsets in the sequel involves the statement of many theorems in three forms—
one for each order. It will usually be possible to prove results only for the order on subsets,
then infer the corresponding result for the coarse order by particularizing to subsets con-
taining exactly one element (see lemma 2-2 (v)) and from this infer the corresponding
result for the fine order by use of the metatheorem of §2; this will avoid unnecessary
triplication of proofs.

3. Shape subgroups

DEFINITION 3:1. Let A be an algebra of expressions, 0: A—W and 62 A— W be a fine and coarse
shape respectively and X' the corresponding shape set_function. Then for o.c W the sets W, and W, are
defined W, = (x:xeA, o(x) >a}, W,={x:xeA, ((x)>a),
and for any subset @ of W the set W@ is defined

W, = {x: xe A, 2(x) > D).

LEmMA 3-1. With the notation of definition 3-1, the sets W, \A?V(,_ and VAV@ are fully invariant and
hence verbal subalgebras of A.

Proof. For any endomorphism § of A and x € A,

o(x0) = 0(x), 6¢(x0)>06(x) and 2X(x0)>2(x):
this is easily checked by induction over the height of x. Thelemma then follows immediately.

DeriNiTION 3-2. Let G be a describable algebra (or in particular a group), let p: A — G be a descrip-
tion of G and o, & and X be the shapes on A associated with a shape range W. Then for each o € W the
subsets W,(G) and W ,(G) of G are defined

Wo(G) = Wop ={xp:xeA, 0(X) = aj,

W(G) = W,p = fxp: xe A, 3(x) > al,
and for any subset © of W the subset W,(G) of G is defined
Wy (G) = Wep = {xp: xe A, Z(x) > D).

All these subsets will be called shape subalgebras of G. 23, i’ABa and QABQ are the classes of groups G
Sfor which W,(G), W,(G) and We(G) respectively are trivial: it follows from the next theorem that

2
these are varieties.

TuEOREM 3-1. With the notation of the preceding definition,
1) WLG), W(G) and Wy(G) are independent of the particular description p of G chosen
to define them.
(i1)  They are all verbal and hence _fully invariant ideals of G.
(i) Wi(G) = WA(G) = Wiy(G) = Gy W(G) = W(G) = Wen(G) = Wa(G) = I,
where I is the trivial ideal of G, that is, the ideal generated by {1}.


http://rsta.royalsocietypublishing.org/

. |
/I

THE ROYAL A
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

I B

THE ROYAL A
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

Downloaded from rsta.royalsocietypublishing.org

BASIC COMMUTATORS 351

() a<p=W,(G)2W)(G), a<p=W,G)2W,C), D<F=Wy(C) 2 We(G)
and as a special case of this last implication
Oc¥= WQ(G) c WT(G)

V) WG, Wy(G)] = W,,4(G), [W,(G), Wy(G)] = W, 4(G),

[Wo(G), We(G))] € Wo,s(G).
(vi) foavﬁ(G) S W (G)n Wy(G), We,w(G) € Wa(G) n We(G).
(vil) T7,(G) = W,(G).
(viii) Let G be a group. Then

Wa(G) = TI Wy(G).
pe
Proof. (i) and (ii) follow from the fact that W, Wa and W@ are verbal subalgebras of the
relatively free algebra A and p: A— G is an epimorphism. '

(iii) Let x be an arbitrary element of G. Since p is epi there exists X € A such that Xp = x.
But then o(x) > 1, #(x) > 1 and 2 (x) > {1} s0 x is an element of W;(G), W,(G) and W;,(G).

(iv) follows immediately from the definitions.

(v) Letx = [a, b] where ae W, (G) and b e Wy(G).
Then there exist a and b € A such that ap = a, bp = b, X(a) > ® and 2'(b) > ¥ But then
2([a,b]) > @+ and x = [a,b] p s0 x € Wy,(G). Thus the set

{[a,6]:ae Wy(G), be Wy (G)}
is a subset of W, o(G). But [W,(G), W4(G)] is the subalgebra of G generated by this set
and is thus contained in W,,+(G) also. That
[W,(G), Wy(G)] € W,up(G) and  [W,(G), WH(G)] € Wy p(G)

may now be inferred as described at the end of § 2.

(vi) 1isa corollary of (iv) using lemma 2-2 (i).

(vii) follows from the fact, already remarked, that for any expression X€ A, ¢(X) < 0(X).

(viii) Since W¢(G) = W/{¢}(G) by lemma 2-2 (v) and, for any ¢ e @, {$} > @, itfollows that
};{p Wy(G) = Wo(G).
To prove the converse inclusion it is sufficient to show that, for x € A such that 2(x) > @,

xpe T W,(G)
deo

and this follows from the definition of 2'by an easy induction over ££(X).

4. A lemma on partially ordered groupoids

Let G be a set, partially ordered by <. Two elements @ and b are comparable if either a < b
or b < a, otherwise they are incomparable. A subset X of G is totally unordered if every pair of
distinct elements of X are incomparable. The partial order < is a partial well-order if every
non-weakly ascending sequence, that is every sequence Xy, X, ... for which ¢ <j=x; X«; is
finite or, equivalently, if it satisfies the descending chain condition and every totally
unordered subset is finite. The equivalence of these definitions follows from the theorem:

46 VoL. 264. A.
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Let X be a partially ordered set satisfying the ascending and descending chain conditions and in which
every totally unordered subset is finite. Then X is finite.

This theorem is usually attributed to Ramsey and follows from his theorem A (1928)
upon setting 7 = 4 = 2 and C, and C, to be the sets of pairs whose members are comparable
and incomparable respectively. '

LemMMA 4-1. Let G be an (addztwely wrztten) Sinately genemted groupozd [)artzally ordered by a
relation < which satisfies
(1) the usual regularity condition

K<b=a+x <b4+x and x+a <x+b,

(11) the additional condition
- ' a<atx and a <x-+a.
Then < is a partial well-order.
- Proof. Let H be a groupoid, partially ordered by <, which is the image of G under an
order-preserving epimorphism . Then the existence of an infinite non-weakly ascending
sequence in H implies the existence of a similar one in G: in other words, if G is partially
well-ordered by < so is H. It may now be assumed that G is an absolutely free groupoid,
freely generated by a finite set {¢, ¢y, ..., ¢,} and that < is the coarsest partial order satisfying
conditions (i) and (ii) provided that any such order exists. The length A(a) of an element
a € G may be defined by its properties A(¢;) = 1 (1 < ¢ < n) and A(a+b) = A(a)+A(b). The
relation <’ on G defined by a <’b if a = b or A(a) < A() is then a partial order satisfying
conditions (i) and (ii) and consequently <, the coarsest partial order satisfying these
conditions, exists and then a< b = a<"b =A(a) < A(d) so < satisfies the descending chain
condition. The proof now proceeds on these assumptions.

Order the w-sequences (the sequences indexed by the non-negative integers) in G lexico-
graphically: if (x,);c, and (y;);c, are two such sequences then (¥;);¢,< (¥;);e, if there
exists a non-negative integer i, such that x;, <y, and ¢ <5 =>x; =y,

- Suppose there exists an infinite totally unordered subset in G (from this hypothesis a
contradiction will be deduced, proving the lemma since it has already been observed that
< satisfies the descending chain condition). Then the set 7 of totally unordered w-sequences
(w-sequences (t:)i e, such that ¢ & j = ¢, and ¢; are incomparable) is non-empty.

Define an w-sequence (¢;);c,, recursively as follows: suppose that the ¢; (j < ¢) have been
deﬁned. Let T}, be the set Ty = {t: (1) e €7 j < i=1; =},
and let ¢; be any minimal element of 7;. Then for any non-negative integer ¢, there exists
(¢); e €7 suchthaty <i= ¢; = t;. Thus (¢;); ¢, is totally unordered and a minimal member
of 7 : it is thus a minimal totally unordered w-sequence.

Suppose some of the generators ¢, e¢,, ...,¢, appear as terms of (¢;);¢,. Then since this
sequence is totally unordered each of these generators can appear at most once, so the new
sequence formed from (¢;);c, by deleting these terms and ‘closing the gap’ is still an
w-sequence. Further, all the terms in the new sequence must lie in the subgroupoid
generated by the remaining generators (those not appearing as termsof (¢;); ¢,,)- Thusit may
be assumed without loss of generality that none of the generators e, e,, ..., ¢, appear as terms
of (¢;);e, Then, since G is a free groupoid, each ¢; may be written uniquely in the form
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¢;=a;+b; Let A ={a;};c, and B = {b, },ew, but notice that the a; need not be dlstmct nor
need the b, be.

Suppose that 4 contains an mﬁnlte totally unordered subset Then there exists an
w-sequence (m(z))z <, of non-negative integers such that (a,,;,); ¢, is totally unordered. Now
let £ be the first non-negative integer for which ¢, is comparable with some term of (a,,;); icot
such a £ exists since, for instance, ¢, is comparable with a,,,. Let a,,,;, be the term com-
parable with ¢;. If ¢, < a,,(,, then ¢, < a,,(;,+ 0,01y = €,y Which is 1mp0551b1e since (¢;); e, 18
totally unordered; thus ¢, > a,,(,,. Now define a sequence (4,);¢c, by

di=c¢; (I<k)
= Opirrpy (EZh). 0
Then (d;);¢, is totally unordered for if ¢ < j < £ then d; = ¢, and d; = ¢; are 1ncomparable
since (¢;); ¢, is totally unordered, if i < k <jthend; = ¢;and d; = a,,;, ;s are incomparable

by the choice of £ and if k£ < i <j then d; = a,,4,,y) and d; = a,,;,,_;, are 1nc0mparable
since  (@,;));e, is totally unordered. However, : <k=d; =c¢;and d, =a, < ¢, sO
(@piiy)iew= (¢;);c, This contradicts the fact that (c;);c, is a minimal totally unordered
w-sequence, thus proving that 4 contains no infinite totally unordered subsets. By the
same argument every totally unordered subset of B is finite. But < satisfies the descending
chain condition so both 4 and B are partially well-ordered by <.

Now suppose there exists an infinite ascending chain in 4. Then there is an w-sequence
(n(1)); e, of non-negative integers such that 1 <j=-a,;,< a,;,- Now consider the sequence
(bniir)icwr Suppose for some @ < j, by < by(jy- Then ¢,y = @, + by < iy + by = Cuiiy
which is impossible since (¢;); ¢, is totally unordered. Thus, for all 7 < j, b,;, K b,;, which is
also impossible since B is partially well-ordered and hence contains no infinite non-weakly
ascending chains. This proves that A satisfies the ascending chain condition. But it has
already been observed that it satisfies the descending chain condition and contains no
infinite totally unordered subsets. Thus, by the theorem of Ramsey quoted above, 4 is
finite. By the same argument B is finite also.

But each ¢; is the sum of an element of 4 and one of B, so the ¢, are not all distinct. This
contradicts the fact that (¢;); ¢, is totally unordered and the lemma is proved.

It should be remarked here that although the Axiom of Choice appears to have been used
in several places in this proof (most obviously in the definition of (¢;);,, and less obviously
in the assumption of the existence of w-sequences of distinct elements in infinite subsets of G)
this is not in fact the case—for any algebra with a finite or well-ordered set of generators and
a finite or well-ordered set of operators can be well-ordered and then a choice function for
its non-empty subsets constructed without use of the Axiom of Choice.

COROLLARY. (i) The coarse order on a shape range W is a partial well-order and hence a complete
lattice order in the sense that, for any subset © of W the meet A @ and join v @ exist. (ii) Any totally
unordered subset ® of W is finite and the relation < between totally unordered subsets of W (definition
2-2) satisfies the descending chain condition.

5. Shape subgroups as products of commutator subgroups

For any group G the subgroups formed from G by repeated subgroup commutation,
together with the trivial subgroup {1}, will be called the commutator subgroups of G; in
other words, the set of commutator subgroups of G'is the smallest set of subgroups of G which

46-2
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has G itself and {1} as members and is closed under the operation: 4 and B are commutator
subgroups =-[4, B] is also. The object of this section is to show how, for a given shape
range W, the corresponding shape subgroups can be described in ordinary group theoretic
terms as finite products of commutator subgroups in G.

DEFINITION 5:1. For any element ¢ of a shape range W, U(¢) s the set of all pairs (a, ) for which
i) apeW,
(i) a+p =9,
(i) f<a< g,
(iv) o/ <oa=a'+f<dandf’ <f=a+t+p <9¢,

and U (@) is the set of all pairs (a, ) for which

(i) a,pfeW,
(i) a+p >4,
(i) f < a4,
(v) d<a=a'+fFdand f'<f=a+pf > ¢.

Notice that U(1), 17(1), U(o0) and U(oo) are all empty.

LEmMMA 5-1. Let ¢ be an element of a shape range W other than 1 and let G be a group. Then

WG =TI, WG, Wy(G))

Proof. If =00 the result is trivial, using the usual convention that the product of an
empty set of subgroups of G is the trivial subgroup. Now suppose ¢ 5 1 orco.
Suppose (2, ) € U(¢). Then

[W,(G), Wy(G)] < W,,4(G) by theorem 3-1 (v),
< W 4(G) Dby theorem 31 (iv),
since a+f > ¢. Thus T [ V.(G), Wﬁ(G)] < W¢(G).
(@, e
~ To prove the converse inclusion, notice first thatif o', /' e W, o' } ¢, /' > dand o' +f > ¢
then there exist «, f € W such that« < o', § < #' and either (a, #) or (f,«) e U($): this follows
immediately from definition 5-1 by induction over ¢.
Let p: A— G be a description of G and §: A— W the approprlate coarse shape. It is now
sufficient to show that, for xe A,
0(x) >g=>%pe TI [W,(G), W,(G)],
. (@, pre O
by induction over the height of X. If 4#(x) = 1 then either X = 1, in which case the result is
trivially true, or else X = g; € G, in which case ¢ < ¢(x) = 1 contrary to the assumption.
Now suppose A¢(x) > 1 and the result is true for all X of smaller height. Then there are three
possibilities: if X = u~! or X = X, X, the result is true since

W.(G), W,(G
(“’mw(@[ «(G), Wy(G)]

is a subgroup and if x = [a, b] then &’ -+§" = ¢(X) > ¢ where &’ = o(a) and ' = #(b). Now
if «’ > ¢ then by the inductive hypothesis

ape  TI [W,(G), W,(G)]
(a, e V()
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and then, since this subgroup is normal, so does Xp = [ap, bp]. If §’ > § the same argument
applies. Finally, if «’ > ¢ and £’ } ¢, then, as observed above, there exist «, # € W such that
@ < o, f < f and either («,f) or (#,«) € U(¢). Then ape W,(G) and bp e Wﬂ(G) SO

xp = [ap, bp] € [W,(G), W(G)] = [W,(G), W,(G)]

and the result is true.
Translating this lemma according to the metatheorem of § 2 yields:

COROLLARY 1. Let ¢ be an element of a shape range W other than 1 and let G be a group. Then
We(G) =TI  [W.(G),W,(G)].
#

(a, B) € UC

COROLLARY 2. Let ¢ be an element of a shape range W and G be a group. Then Wy(G) and W¢(G)
are each a product of a finite set of commutator subgroups of G.

Proof. That W¢(G) is the product of some set of commutator subgroups of G follows from
the statement of the lemma by induction over ¢. But every product of commutator sub-
groups of G is the product of a finite number of them because the set of commutator
subgroups is a groupoid under subgroup-commutation, finitely generated (by G and {1})
and ordered by inclusion which satisfies 4 = [4, B] and B = [4, B],so by Lemma 4-1, every
collection of commutator subgroups in which no one is a proper subgroup of another is
necessarily finite. Translation of this result by the metatheorem yields the corresponding
one for W (G).

Returning to the lemma and corollary 1, the formulae given there provide a practical
recursive method for calculating ordinary group-theoretic expressions for the shape sub-
groups corresponding to the shape range I/ once the structure of W is known. This process
is applied in the next lemma to the shape range N~ and in chapter III to more interesting
ones.

LemMa 5-2. For each positive integer ¢ and any group G,
N7 (G) = N7 (G) = A,(G).
Proof. First, since the fine and coarse orders on N~ are the same, it follows that
N7 (G) = N (6).
The proof that N; (G) = y,(G) is by induction over ¢. When ¢ = 1 this is trivial. For ¢ > 1 it
follows by definitions 1-3 and 5-1 that U(c) = {(c—r,7): 1 <r < 4c} so
Ne(G) = TI [Ne.(G), Ny (G)]

1<r<ic

= n [yc—-r(G)byr(G)]

1<r<ic
=7.(G).
CoroLLARY. For each positive integer c,
A
N, =N =N_,,

the variety of all groups which are nilpotent of class c—1.
These calculations show that routine application of lemma 5-1 may yield a redundant
product and corollary 2 provides no guarantee that this may not be infinite (as written);
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but for applications this could well be inconvenient. Thus the following lemma is of practical
interest, although it is not used in the development of the theory.

LEMMA 5:3. For each element ¢ of a shape range W the sets U(¢) and U(¢) are finite.

Proof. It will be proved that U(g) is finite: that U(¢) is finite then follows as usual by
application of the metatheorem of § 2. Write 4 = {a: (o, f) € U(¢)}and B = {f: («,f) e U($)}.
By the corollary to lemma 4-1, both 4 and B are partially well-ordered by < so in order to
show that 4 is finite it is sufficient to show that it satisfies the ascending chain condition.
Suppose then that 4 contains an infinite ascending chain. Then there is an infinite sequence
(a1, /1), (@9, ) ... in U(g) such that ¢; < @, < .... Now suppose, for some ¢ < j, §; < §;. Then
a;+f; > oa;+pf; > ¢ and «; < a; which contradicts (o, f;) U(¢). Thus the sequence f;,f, ...
is an infinite non-weakly ascending sequence which is impossible since < is a partial well-
order. Thus 4 is finite; by the same argument B is finite and then so is U(¢).

6. Basic commutators

In this section a well-ordering of the set C of commutators is described. This order depends
upon two things: the order imposed upon the set G of generators by the ordinals indexing it
and the shape o: A — W. Subsequently a subset of G, the set of W-basic commutators, is defined
in terms of this. The group-theoretic results arrived at later will not depend upon the well-
ordering of G, though they do depend very much on W; however, the intermediate steps
rely heavily on this well-ordering.

For the remainder of this chapter the word ‘shape’ will refer to ‘fine shape’.

DEFINITION 6°1. Let o2 A— W be a shape. The relation < on G is defined:
(i) If g, and §; are generators (commutators of shape 1) then
g, < g;<=1</.
(i) If a and b are commutators of distinct shapes (d(a) = a(b)) then
a<b<cg(a) <ob).
(iii) If a and b are commutators of the same shape, o(a) = o(b) =& say, and &1 then
‘a < b’ is defined recursively over &. An intermediate definition must be made: suppose X is any com-
mutator of shape &. Then, since § > 1, 1t may be writlen in the form X = [X, X,]. Then the leading
and trailing parts of X are
dx)=x, if ’X2<X1 or X,=X,
= X, otherwise; and
tr(x) =%, if X,<X; or X,=X,

= X, otherwise.

Then a << b if and only if
(a) 1d (a) < 1d (b),
- (b) ld(a) =1d (b) and tr(a) <tr(b),
or (¢) ld(a) =1d (b), tr (a) =tr (b) and b, < a,
(where a = [a;,a,] and b = [b,, b,]). The reversal of the relation in part (iiic) is intentional. With
regard to this part of the definition 1t will be observed that if 1d (a) = 1d (b) and tr (a) = tr (b) then
either b=aorb = [a,,2,]. .
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(iv) The relation < on G is defined: a < b if a < b or a = b. Subject to the proof in the next

lemma that < is an order for G, the notations = and > will be used in the usual sense and the relation <
called the W-ordering of C.

Lemma 6-1. With the notation of definition 6-1, < is a (full) well-ordering of C.
Proof. Notice first that
@) a<b-o(a) < o(b),

(

(y) a<b and ¢(a)=o(b)>1=1d(a)<1d (b),

(0) a<b, o(@)=0(b)>1 and Id(a)=1d(b)= tr(a) < tr(b),

() a<b, o(a)=0c(b)>1, 1ld(a)=:1d(b) and tr(a)==tr(b)=b, <a,

(where a = [a;,a,] and b = [b,, b,]).
Since it is not yet proved that < is a partial order, these statements must be proved by
checking the various possibilities listed in the definition. It is now shown that < is indeed
a partial order.
(1) < isreflexive, by part (iv) of the definition.

(i) < is weakly antisymmetric. Supposc that X <y and y < x. Then, by («),
o(X) = o(y) since the rclation < on W is known to be an order. Write ¢(x) = o(y) = &. If
£ = 1 then there exist ordinals : and j such that X = g, and y = g; and then ¢ = j by (/) so
x =y. If £ > 1 it may be supposed inductively that the relation < is weakly antisymmetric
on the sct of all commutators of shape < &. Then, by (y), 1d (x) =1d (y) so, by (9),
tr (X) == tr (y) and finally by (¢), x; == y, where X = [X;,X,] and y = [y, y,]. Hence x =y.

(iii) < is transitive. Suppose X <y and y < z. Then by (), 0(x) < o(y) < o(z). If
0(X) < o(z) then X < z by part (ii) of the definition. Otherwise 0(X) = o(y) = o(z) = £ say.
From now on the proof follows the same pattern as that of weak antisymmetry, helped by
the fact that it may be assumed inductively that the relation < is a partial order on the set
of all commutators of shape < .

(iv) <isa (full) well-ordering of G. Supposc X is a non-empty subset of C. It is shown
that X has a lcast element. Let X be the set of commutators of least shape, & say, in X. This
is non-empty and, by part (ii) of the definition, if X, has a least element so does X. If{ =1
then X is a non-empty subset of G which is well-ordered by part (i) of the definition, so X
has alcast element. If{ > 1 it may be assumed inductively that the set of all commutators of
shape < {is well-ordered by <. Then the set X, of all commutators of lcast lcading part,
Isay, in X, is non-empty and if it has a least element so does X. Further, the set X; of all
commutators of least trailing part, t say, in X, is non-empty and if it has a least element so
does X. But X; = {[1, t], [t,1]} and so has a least element since [1, t] < [t,1].

DEFINITION 6-2. (A) Let a: A— W be a shape. A particular type of commutator, called a W-basic
commutator s defined recursively over its weight by
(1) FEvery commutator of weight 1 (that is, every member of G) is a W-basic commutator.
(i1) A commutator ¢ = [b, a] of weight > 1 is W-basic if (a) a and b are both W-basic
commutators, (b) a << b (under the W-ordering of G), and (¢) if b = [b,, b,] then b, < a.
(B) A W-basic expression is an expression of the form 1 or b¥ bg2 ... b¥ where
(1) ks a positive integer,
(i1) each b, is a W-basic commutator,
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(iii) b, < b, < ... < b, under the W-ordering, and
(iv) each o; is a non-zero integer (positive or negative).
The set of all W-basic expressions is denoted BY.
Whenever there is no doubt about which shape range W is under consideration, the adjective * W-basic®
will be abbreviated to “ basic’ and the set BW written simply B.
For any ae W, the set of basic expressions in which
(v) o(b;) <a(l < i< k) is denoted BY or simply B, and the set of basic expressions in which
(v)" &(b,) #a(l < i< k) is denoted BWor simply B
For any subset @ of W the set of basic expressions in which
(v)" ge®=08(b,) + (1 <t <k) is denoted B(I, or simply B
For any positive integer ¢ the set of basic expressions in which
(V)" wt(b,) <c¢ (1 <i<Kk) is denoted BYY) or simply B .
The expression 11is assumed to be a member of all these sets.
Notice that, if u and v are basic expressions other than 1, ueB,, and ¢(v) > « then uv is
also a basic expression.

7. The number of basic commutators

This section is devoted to finding an expression for the number of basic commutators of
a given weight when the number 7 of generators is finite. The argument given here is a
modified form of Witt’s original one (1937) ; his argument does not carry over exactly since
it requires the order type of the set of basic commutators to be .

DEeriniTION 7-1. (A). An order < defined on the set G of commutators s a B-order if
1) < (fully) well-orders G,
(i) a <[a,b]andb < [a,b],
(iii) g, <[a,b]andi<j=8, < g,.
(B). If < is any B-order, then a (<)-basic commutator s defined recursively over its weight:
(i) Every 8,€G is a (<)-basic commutator,
(i) [b,a]isa (<)-basic commutatorif (a) both a and b are (< )-basic commutators, (b) a < b
and (¢) if b = [by, b,] then b, < a.
Until further notice it will be assumed that there is a fixed B-order < defined on the
set G of commutators, in terms of which the following definitions are made.

DeFINITION 7-2.
(i) A commutator c is b-compatible, where b is any (<)-basic commutator, if [, b] is a
(<)-basic commutator.
(i) For any (<)-basic commutator b, write b for the successor of b under the restriction of <
to the set of (<)-basic commutators.

DEFINITION 7-3. For any expressions b, a,,Q,, ..., a, and non-negative integers ny,ny, ..., ny the
expression [b, ny a,, nyQ,, ..., n, ;] is defined recursively by

[b,0a] =b
[b,nya,,n,8,,...,n,a,] = [b,n,a;,n58,, ...,0_18,_1] f n,=0,
= [[b,na,n,2,, ..., (m;—1)a,],a,] of n,>0.

If any of the n; are 1 they may be omitted.
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It follows immediately from these definitions that

LEmMMA 7-1.
(i) If a and b are commutators, then wt ([b, na]) = wt (b) +zwt (a),
(i1) ¢f b is (<)-basic and ¢ is b-compatible, then [c,nb] is (< )-basic and b-compatible for
all n = 0 and b*-compatible for all n > 1.

LemMA 7-2. If the order-type of the set G of commutators under < is  and 7 is finite then the collection
of (<)-basic commutators may be indexed by the positive integers {b,}?_, so that i < j<=>b, < b; and
then, for each positive integer w, there exists an integer n,, such that ¢ = n, = wt (b;) > w.

Proof. Since the number of generators of A is finite, an casy inductive argument shows
that the number of commutators of weight less than any fixed integer w is finite. The lemma
follows immediately.

It should be remarked that, as the indices have been defined, b, = g,, b, = ¢, and so on.

DeFINITION 7-4. With the conditions of lemma 7-2, a sequence (X)), of subsets of A, is defined as
Sollows:
(1) X,=G,and
(i1) fori > 0, X, us the set of all b;-compatible commutators.

LEmMA 7-3. For each integer r = 1,
(1) Xr—l _Xr = {br}> and
1) X,—X,_, ={[c,nb,]:ceX nX, _, and n > 1}.

Proof. The argument is slightly different for the cases r =1 and 7 > 1.

r=1 ,

i) X,= G, b, =g, and X is the set of all g,-compatible commutators. Clearly
g,€Gandisnot g,-compatibleso {g,} = X,—X,. Now suppose ce X;—X,. Then ceX;=G
so there exists 7 << 7 such that c =g,. If i > 1 then [c,8,] = [8:,8,] 15 (<)-basic and so
g,eX, contradicting the choice of ¢ = g,. Thus ¢ = g, and X, —X, = {g,} = {b,}.

(ii) Bylemma 7-1 (ii), all commutators of the form [g,, n8,], where: > 1 and n > 0, are
g,-compatible and thus members of X,. It is now shown that all members of X, are of this
form by induction over their weight. If g, eX, then it is g,-compatible so == 1 and since
g, = [8,,08,] it is of the desired form. If [b,a]eX| then it is g,-compatible so [b,a, g,] is
(<)-basic and thus a < g,, that is, a=g,. Then [b,a] =[b,g,] is (<)-basic so b is
g,-compatible. Inductively, b = [g,,78,] where i > 1 and n > 0 and then

[b,a] =[g,, (n+1) 8]

which is of the desired form. This proves that X, = {[8,,78,]: ¢ = 1, n = 0} and then, since
X,=G, X,—X,={[8,780]:1=1,n>1} and X, nX; = {g,: 7 > 1}. This case is proved.

r>1

(i) b,>b,_, and, if b, = [¢,,¢,] then ¢, < b, so that ¢, <b,_,. Thus [b,b, ] is
(<)-basicsob,eX, _,. But b,is not b,-compatibleso b, e X, | —X . Converscly, suppose that
ceX, ,—X,. Then [c,b,_,] is (<)-basic but [¢,b,] is not. Thus onc of the conditions of
definition 7-1 (B) must fail for [c, b,]. Now cis (< )-basic since [¢,b,_;]is and if ¢ = [¢}, ¢,]

47 Vor. 264. A.
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then ¢, < b,_, for the same reason so ¢, < b,. Thus the only condition that can failis (), that
is, ¢ < b,. But again, since [c,b,_,] is (<)-basic, ¢ > b,_;. Thus ¢ = b,. This proves that
Xr-l _Xr = {br}

(i) If ceX,_;nX, and n > 1 then [c,nb,] eX, by Lemma 7-1 (ii). But, since n > 1,
[c,nb,] is not b,_;-compatible. Thus [c,zb,] eX,—X,_,. Conversely, suppose ceX, —X,_,.
The argument proceeds by induction over the weight of ¢. Now [c¢,b,] is (<)-basic but
[c,b,_,] is not, so one of the conditions of definition 7-1 (B) must fail for [c,b,_,]. But c is
(<)-basicsince [c, b,] is and for the same reason ¢ > b, > b,_;. Thus the only condition that
can fail is (¢), thatis, ¢ = [¢,, ¢,] and ¢, > b,_;. But again, since [¢, b,] is (<)-basic, ¢, < b,.
Thus ¢, =b, and ¢ = [c},b,] so ¢, is b,-compatible. If ¢, is also b,_;-compatible, then
c=[c;,1b,] and ¢;eX,nX,_; and the result is true. If ¢, is not b,_,-compatible then
c,eX,—X, _, and inductively ¢, = [c¢/,nb,] where ¢'eX, nX,_, and n > 1. Then

C= [clabr] = [C,> (n+1) br]:
which is of the desired form.

It will be convenient from now on to write a product Xy where either X or y may be empty
in the sense that possibly Xy = x or Xy = y. This slight abuse of teminology will save much
circumlocution. The same terminology may be applied to products of more than two
expressions; on the other hand, the idea of a product in which all factors are empty is
meaningless per se.

DeFINtTION 7-5. With the conditions of lemma T-2:
(A) For any integer r = 0, write P, for the set of expressions of the form

p =b#bs2... b¥c,c,...Cp,
where each a; is a non-negative integer, k = 0 and each c;€X,. The possibilities r = 0 and k =0

correspond to the possibilities that the products by bg>...b% and c,c,...c, may be empty. The
symbol S(p) s defined

S(P) = oy wt (by) +a,wt (by) +... +a,wt (b,) +wt (¢;)+wt (Cy)+...+wt(c,).
For each positive integer w, P,(w) us the set
P,(w) ={p:peP, S(p) = w}.
(B). A mapping 0,: P,_,— P, is defined for each r = 1. Suppose peP,_,. Then it is of the form
p = b#bg... béu,
where W ts a (possibly empty) product of commutators from X,_,. Now u may or may not contain com-
mutators of the form b, as factors; in any case it may be written uniquely in the form

u = bfa, blfra,bs2...a, bin,
where m = 0, each f; = 0 and, by lemma 7-3 (1), each a,e X,_, N X.. Then p0, ts defined
par = b%l b%z cee b;"Lr——ll bfo[ala ﬂl br] [a2? 16)2 br] te [am> ﬂm br]>
For 1 <i<m, [a,,f,;b]eX, by lemma 7-3 (ii) and so pl,eP, as promised.

LeMmA 7-4.
(1) 0, is a one-to-one mapping of P,_, onto P,.
(ii) IfpeP,., then S(pb,) = S(p).
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Progf. (i) Itissufficient to exhibit a mapping 6": P,—P,_, such that §'0, is the identity on
P, and 0,0’ is the identity on P,_;. Suppose then that peP,. Then it is of the form
pebgtbgz... b¥v, where v is a (possibly empty) product of commutators from X,. By
lemma 7-38 (ii), v may be written in the form v = [a,, /4, b,] [a,,6,b,] ... [a,,,5,, b,], where
m = 0, each f; > 0 and each a;eX,_, n X,. Then defining

po’ — babg: ... bz bea, bfia,bf...a, bin,

it follows that pd’ eP,_,. That 6,6’ and ¢'0, are identities then follows immediately from the
definitions of 6, and ¢'.
(ii) This follows by an easy calculation using the definition of S(p) and lemma 7-1 (i).

CoroOLLARY. With the conditions of lemma 7-2, for r = 0 and w > 1, |P,(w)| = 1%

Proof. By the lemma, the restriction of , to P,_; (w) is a one-to-one mapping of P,_; (w) on
to P,(w). Thus |P,(w)| = |Py(w)]|. But Py(w) is the set of all products u of elements of X,, for
which S(u) = w. But this is just the set of all expressions of the form g; g,,...8;,, where
U1y 1y, --es by < 7. Hence |Py(w)| = 2.

LeMMA 7-5. Suppose the conditions of lemma 7-2 hold. Then the number m,, of (<)-basic com~
mutators of weight w is given recursively by
() m =1,
(ii) my, = 1 — (M, Mgy ..oy My_1y (W > 1),
where the integer {my, My, ..., m,) s the number of functions f from the set

Kk:{(za.]) 1 <Z<ka 1 <]<m2}
into the non-negative integers satisfying

S i flig) = k41

(i,7) € Ky

Proof. By induction over w. The result m; = 7 is already known. Now suppose the result
is true for all weights up to w—1.

By lemma 7-2, there exists an integer N(= n,,,,) suchthati > N = wt (b,) > w. Consider
P, (w) An element p e Py(w) is of the form p = b bg>... b* u where u isa (possibly empty)
product of elements of X. But u is in fact empty, for otherwise u = u'b, where b, eX and
then, since [b,, by] is (<)-basic, 2 > N so that S(p) = S(b,) > w. Thus each element of
P, (w) is of the form p = b# bg2... b7,

Now all the (<)-basic commutators of weight < w appear in {b;,b,, ..., by} together
possibly with some of higher weight (for < does not necessarily preserve weight). However,
since S(p) = w, any commutator b; (1 <7 < N) of weight > w must have exponent a; = 0
in the given expression for p. Thus p is defined uniquely by the powers a; of commutators
of weight < w in that expression.

Suppose that the (<)-basic commutators of weight < w are re-indexed as follows:

b(l,l) b(1,2) b(l,ml)
b(2,1) b(2,2) b(2, ma)
b(w 1) b(w, 2) b(w, mw)

47-2
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where, for each ¢ (1 < ¢ <w), {b 1), D, 2 +s Do, moy 18 the set of (<)-basic commutators
of weight ¢ (in'any order). Thus the set of (< )-basic commutators of weight < w has been
indexed by the set K, defined in the statement of the lemma. The order in which the com-
mutators are written down in this array is not, of course, their order under the B-order <.

Let Q be the set of all peP,(w) in which some commutator of weight w has non-zero
exponent., Then, since S(p) = w, Q is exactly the set of (< )-basic commutators of weight w
and so ]Q| =m, :

But now, if to each peP,(w)—Q a function f, from the set K,,_; into the non-negative
integers is defined by setting f,(1, ) to be the power of b; ;, appearingin the expression for p,
it follows that fp is uniquely determined by p and that

2 f5g) =SP)=w

(i,j) € K

and cbnkvcrse]y‘that any such function uniquely defines an element of P (w) — Q. Thus

IPN(w) - Ql = <m1> My veey Myy1)
and this, together with the fact just proved that |Q| = m,, and the corollary to lemma 7-4,
proves this lemma.

TuroreM 7-1. Let 0: A— W be any shape and suppose that the number 1 of generators of A is
Sfinite. Then the number m,, of W-basic commutators of weig/lt w s gen by Wut’s formula:

- Eﬂ( )Tw/ra

W rfw
where p is the Mobius function.

Proof. Let < be the W-ordering of G and w be given. Now construct a new full-order <’
on C by specifying that <’ coincides with < on the set of commutators of weight < w (that
is, if 2 and b are commutators of weight < w, then a <’ b<=-a < b) and then extending
<’ in any way that preserves weight to the remainder of G (so that, if a and b are com-
mutators such that wt (a) < wt (b) > w then a <’'b). '

Now, since 7 is finite, the number of commutators of each weight is finite, so <’ is of
order-type w. Further, <’ is clearly a B-order (see definition 7-1). Thus lemma 7-5 obtains
and the number m), of (<’)-basic commutators of each weight ¢ is given by the recursive

‘definition , ' P ,
my =17, m,=71—{my, My, ..., M,_1).

But <’ was chosen to coincide with < on the set of all commutators of weight < w so, for
each ¢ << w, the collection of (< ')-basic commutators of weight ¢ is the same as the collection
of (<)-basic commutators of weight ¢ and this in turn is just the collection of W-basic com-
mutators of weight ¢ (compare definitions 7-1 (B) and 6-2 (A)). Thus, for each ¢ < w,
m,, = m,. This proves the recursive formula :

my =1, m,=1—{m,my,...,m_y (c<w).

But this formula depends only upon 7 and w and not on the particular shape range ¥ chosen:
in particular m,, is the same as the number of N~-basic commutators of weight w. But the
N--ordering of G preserves weight, so these are just the commutators of weight w which are
basic in the conventional sense and so m,, is given by Witt’s formula.
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CHAPTER II. THE COLLECTING PROCESSES

The collecting processes to be described in this chapter differ in two important respects
from the process used in the conventional theory. First, the processes described here are
defined in terms of a particular shape range W, the object being to convert an arbitrary
expression in A to a W-basic one; in this sense these processes are more general than the
conventional one. Secondly, while the conventional processes involve an initial expansion
of the expression to be collected into a product of generators and their inverses, an expression
of shape 1, followed by collection into products of basic commutators of successively higher
weights, the processes described here involve no such initial expansion: they proceed
through a sequence of expressions of non-decreasing shape and so certain properties of
commutators which may be expressed in terms of their shape are preserved.

It is well known that calculations performed in the ‘bottom’ of a nilpotent group, that is
in 7,(G) when G is nilpotent of class ¢, usually have a particularly simple form. Accordingly
it will be advantageous to describe first a collecting process which operates in the ‘bottom’
of a group, however here the ‘bottom’ may also mean W,(G) when Ge23,, . This is the
special process. Following this a general process will be described which can operate either
anywhere in W, (G) when G e, under certain restrictions on a and f or else anywhere in
a nilpotent group.

For the remainder of this chapter it will be assumed that a fixed algebra A of expressions
and a fixed shape range W are under consideration and all definitions will be made in terms
of these. ‘

8. The special process
DerintTION 8:1. (A) Let X,y € A. Then write d: Xy if X and'y are any of the following forms:
(i) x=ab, y=ba.
(i) x = (ab)"!, y=Db-la"L
(i) x = (a ), y—a.
(iv) x=alaoraa’l, y=1L
(v) x=alor la y=a.
(v1) x=1"1 y=1
(vil) x = [a,a], y=1L
(viiil) x =[a,1] or [1,a], y=L1
(ix) x={a"l,b]or[a,b"!], y=][a,b] L
(x) x=[ab,c], y=[a,c][b,c] or x=][a,bc], y=][a,c][a,b].
(xi) x=1[a,b], y=/[b,a]! provided a,b are commutators and a <b.
(xil) x = [c,b,a], y=[b,a,c] ![c,a,b] provided a, b and c are commutators and
a<b<ec
The notation ts extended to larger expressions by recursion over their height:
(xii) If d:a;—a, then d:aj'—>ay! and, for any beA, d:a,b—a,b, d:ba;—>ba,,
d:[a,b]—[a,,b] and d: [b,a,]>[b,a,].
(B) Write D: x>y if there exists a finite sequence (W;)F (k= 0) of expressions such that
U, =X, U, =yandd:u,_—u; (1<i<k).
" The relation D: x>y is clearly reflexive and transitive, that is, it is a pre-order. It also
follows from the definition that Part (xiii) holds just as well for D as for d.
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DeriniTION 8:2. 4 product of commutators of length [ is defined::
(1) 1 a product of commutators of length 1, as are ¢ and ¢=! where € is a commutator.
(i) If x, and x, are products of commutators of lengths 1, and I, respectively then XX, is a
product of commutators of length 1, +1,.
Clearly a product of commutators X has a property £ essentially (definition 1-4) if and
only if each of the commutators which are factors of x has £.

DerFiNITION 8:3. A relation <O is defined on the set G of commutators by: a <°b if and only if
i) o(a) >a(b) or
(ii) o(a) = o(b) anda < b.

Clearly <° is a full order but not a well-order. The relation <° is defined in the
obvious way.

LemmAa 8-1. If a,, @, and b are commutators and a, < a, then

[al’ b] and [b’ al] < [32’ b] and [b> az]-

Proof is only given that [a;, b] < [a,, b], the proofs of the other three inequalities being
similar. Since a; < a,, 0(a,) < ¢(a,). If 0(a,) < o(a,) then ¢([a,, b]) < ¢([a,, b]) and the
lemma is true. Otherwise o(a,) = o(a,) so that ¢([a,, b]) = ¢([a,,b]) and there are two
possibilities: first, if b < a, then

ld ([a;,b]) =a; or b
<a,=1d([a, b)),
and then [a,,b] < [a,, b] and secondly if b > a,, then
ld ([a;, b]) = b =1d([a,,b]) and tr([a,b]) =2, <a,=tr([a,b])
so again [a;,b] < [a,, b].
Cororrary. If <, < or <0 are substituted for < in the lemma, it is still true.

LEemMMA 8-2. Let X be an expression. Then there exists a product y of commutators such that D: X —y.

Proof. If . is a product of commutators then there exists a product of commutators y such
that D:z !—y: this follows by an easy induction over the length of z using only parts
(A) (ii), (iii) and (vi) and part (B) of definition 8-1. If z;, and z, are two products of com-
mutators then there exists a product of commutators y such that D: [z,,Z,] —y: this also
follows by induction over the lengths of z, and z, using only parts (A) (viii) and (ix) and
part (B) of definition 8-1 and the first remark in this proof. The lemma now follows by an
easy induction over the height of x.

LemmA 8-3. Suppose a, b and ¢ are commutators and a < b < c. Then
[c,a,b] <°[c,b,a] and [b,a,c] <°[c,b,a].

Proof. Since a <b < ¢, g(a) < o(b) <o(c) so ¢([c,a,b]) = o([c,b,a]) by definition
2:1 (v). Further [c,a] > ¢> b and [c,b] >c>aso

1d ([¢,a,b]) = [c,a] and 1d([c,b,a]) = [c, b].

But [c,a] < [c,b] since a <b (lemma 8-1) so [c,a,b] < [c,b,a] (definition 6-1 (iiia)).
Then, since their shapes are the same, [c,a,b] <°[c, b, a].
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By definition 2-1 (v) again, ¢([b,a,c]) = ¢([c,b,a]). If ¢([b, a, c]) > ¢([c, b, a]) then
[b,a,c] <°[c,b,a] immediately. If o¢([b,a,c]) = o([c, b,a]) it is sufficient to prove that
1d([b,a,c]) <1d([c,b,a]). But 1d([b,a,c]) is either [b,a] or ¢, both of which are
< [c,b] =1d ([c, b, a]) so the lemma is true.

CoRr oLLARY. Suppose a is a non-basic commutator (a commutator whick is not a basic one). Then
D:a—Db, where b is one of the forms:

i) b=1, (ii) b= c®whereceC, ¢ =41, c<aand wt(c) = wt(a),
(iil) b = c§ cg where ¢; and c,e G, ¢, and ¢, = +1,
C, and ¢, <a and wt (¢;) = wt (c,) = wt (a).

Proof. The argument is by induction over the weight of a. If wt (a) = 1 then a is basic
and the lemma is vacuously true. Now suppose that wt (a) > 1 and the lemma is true for
smaller weights. Since a is non-basic, at least one of the conditions of definition 6-2 (A)
must fail. These are treated separately. Write a = [a,,a,].

a, 15 non-basic. Then by the inductive hypothesis, D: a,—b, and so D: a—[b,,a,| where
b, has one of the forms given above. If b, = 1 then D:a—1 by definition 8-1 (A) (viii). If
b, = ccwhere ceC, ¢ =41, c <%a, and wt (¢) = wt (a,) then D: a—[c,a,]¢ by definition
81 (A) (ix), [c,a,] € G, [c,a,] <®a by the corollary to lemma 81 and wt ([c, a,]) = wt (a).
The argument when b, = c{!c§ is similar.

a, us non-basic. The argument is the same as that just given.

a, < a,. Then either a, = a, in which case D:a->1 by definition 8-1 (A) (vii) or else
a, < a,, in which case D: a—[a,,a,]"! by definition 8-1 (A) (xi). But then

7([aya,]) =o(a), 1d([aya,]) =a,=1d(a),
tr ([a,,a,]) =a,=tr(a) and a, <a,.
Thus [a,,a,] < a by definition 6-1 (ilic) and so [a,, a,] <%a. Clearly wt ([a,,a,]) = wt (a).

a, = [a,;,a,,] and a,, > a,. By virtue of the first case considered, it may be assumed that
a, is basic and thus that a,, > a,,. Then a,;, > a,, > a, and a = [a,;,2,,, a,] s0

D:a—[aj,aa,]7" [a);,a,,8]
by definition 81 (A) (xii). But now [a;,,a,,a,,] <°a and [a,;,a,,a,,] <°a by the lemma.
Again it is clear that wt ([a;,,a,5,2;,]) = wt ([a;;,a,,2;,) = wt (a).

LemmMA 8-4. For any positive integer w, the set of commutators of weight not exceeding w s ( fully)

well-ordered by <°.

Proof. Consider the set {r(x): xe C, wt (X) < w}

of all possible shapes that a commutator of weight < w may have. It follows by an easy
induction over w that this set is finite. But for any a € W, the order <° coincides with the
W-ordering < on the set of all commutators of shape « and so well-orders that set. It follows
that, as far as < is concerned, the set of all commutators of weight < w is the union of
a finite number of well-ordered sets. The lemma follows.

LemMA 8:5. If D: x>y then 2 (x) < 2(y), these sets being ordered according to definition 2-2 (1),
b(x) < 6(y), 0(X) < o(y) and wt (X) < wi ().

Proof. It will be shown that 2'(x) < 2(y); the proofs of the corresponding results for the
coarse and fine shapes and weight are similar.
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Check the various parts of definition 8:1: for parts (A) (i) to (vi) and (viii) to (xi),
2(x) — 2(y), for part (vii) 2(y) = 2 > 2(x) and for part (xii)

-—{0 +6(b)+6(a)}
and — {6(b)+6(a)-1-5(c), 6(c)--6(a)4-5(c)).
But then ( )-+6(b) +6(a) = &(c) +8(a) +-5(c)

< 6(b)4-6(a)+6(c)

by definition 2-1 (v), using the fact that a, b and ¢ are all commutators so that
d(a) =oc(a), 6(b)=o0c(b) and &(c)=og(c).

For part (A) (xiii) the result follows immediatcly from the definition of 2 and for part (B)
the result follows immediately from the definition of 2" and for part (B) the result follows
from transitivity of <

The following theorem and its corollarics are out of logical order in this study. They are
placed herc because they summarize the properties of the special collecting process and
provide a motivation for the definitions of this section. The proof requires the results of
lemmas 9-1 and 9-2, so that the thcorem strictly should be stated and proved immediately
following the latter lemma.

THEOREM 8:1. For any expression X € A there exists 'y € A such that
(1) 'y us a basic expression,
(1) D:x-»y,
(i) o(x) <ofy), 6(x) <é(y), 2(x) <2(y) and wt(x)<wt(y), and
(

1v) there exists an expression yu (0 possibly emply) such that
cu) = o(X)-+1, o(u)>(x)+1, Zu)>2X)+{l} and wt(u) = wt(x)+1
when 0 exists and, for any description p: A~ G of a group G, Xp = (yu) p.

Proof. By lemma 8-2 there cxists a product of commutators z, such that D: x—z,. Since
the length of z, is necessarily finitc it follows that there exists an integer w such that z, is
cssentially of weight < w, that is, z, is a product of commutators each of weight < w.

It is now shown that D: z, >z, wherc z, is essentially basic (a product of basic commu-
tators). Ifz, isitself a product of basic commutators then this is truc with z, = z,. Othcrwise,
againsince the length of z, is finite, there exists a non-basic commutator a which is maximum
under the order <°among thosc factors of z, (members of E(z,)) which are non-basic. This
commutator may appear more than once but in any casc z, may be written in the form

Zl == Voael Vl a62 V2 cee aek Vk’
where k > 1, each ¢; = -I-1 and cach v; is a (possibly empty) product of commutators which

are either basic or <°a. But, by the corollary to lemma 8-3, D: a— b where b is a product
of commutators cach of which is <% a and of the samc weight as a. Thus

D:z,—>v,bev, bv,...berv,,
and then application of definition 81 (ii) converts this into a product of commutators cach

of which is of weight < w and is either basic or <<% a. Thus the maximum (under <°) non-
basic factor of z, has been replaccd by an earlier one. But then by lemma 8-4 this can only
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be done a finite number of times and eventually D:z, -z, where z, is a product of basic
commutators.

But then D: z,—y where y is a basic expression: this follows immediately from definition
8-1(A) (i), (iv) and (v).

Parts (i) and (ii) of the theorem are thus proved. Part (iii) now follows from lemma 8-5.

For part (iv), lemmas 9-1 and 9-2 must be invoked. By lemma 9-1, E: X — yu where u has
the required properties and then, by lemma 9-2, Xp = (yu) p.

CoROLLARY 1. Suppose @ is a subset of W, G is a group of the variety @m{n and x e Wy (G).
If p: A—G is any description of G then there exists Xe A such that X e ﬁq, N Wd, (see definitions
6-2 (B) and 3-1) and xp = x.

Proof. Since x € W,(G), there exists x'e A such that X'p = and X(x’) > ®. By the
theorem, D: X’ —X" where X" is a basic expression and 2'(x") > ® and x = Xp = (X"u)p
where u is possibly empty, but if it exists, 2Z(u) > X (x')+{1} > ®+{1}. Then, since
GEQABCDHH, up=1and x"p=x If X" =10r 2(x") > ®+{1} then x =1 and the result is
true with X = 1. Otherwise X" is a basic expression of the form

x" =b#bs...bx (k=1),

where at least one of the commutators b% has the property 2 (b;) 3 ®+-{1}. Then the result

is true with X = beiib%i ... be%im
i i tm

where 7,, %y, ..., %, is the subsequence of 1, 2, ..., k for which the corresponding commutator
is of shape set } ®+{1}.

COROLLARY 2. Suppose p € W, G is a group of the varzety QAB%\I and x € W¢(G). If p: A—>Gis
any description of G then there exists X € A such that xeBy,, n W and Xp = x.

Proof. This follows from corollary 1 by writing ® = {¢}.

COROLLARY 3. Suppose €W, G is a group of the variety W, and x eWy(G). If p: A—>G is
any description of G then there exists X e A such that X e By, n W and Xp = x.

Proof. Translate corollary 2 according to the metatheorem of § 2.

COROLLARY 4. Let G be a group, nilpotent of class ¢ and x€y,(G). If p: A— G is any description
of G then there exists X € A such that x e BY, ;) n N and Xp = x.

Proof is similar to that for corollary 1.

9. The general process

DEeFINITION 91, (A) Let X, y e A. Then write e: X—Y if X and y are of any of the following
Sorms:
(i) x=ab, y=ba[a,b].
(ii) x=(ab)~!, y=b"la"L
x = (a"!)"l, y=a.
x=alaoraa’l, y=1
(v) x=alorla, y=a.
(vi) x=171, y=1

48 Vor. 264. A.
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(vil) x=[a,a], y=1
(viii) x = [a,1] or [l,a], y= 1
(ix) x=[a"L,b], y=[a,b] ![b,a,a™!] or
x = [a,b7!], y=[a,b]"![b,a,b"].
(X) X = [ab, C], y= [a, C] [a, C, b] [b, C] or
X = [a> bC], Y= [a, C] [a, b] [a> b, C]'
(xi) x==]a,b], y=|b,a]"! provided a and b are commutators and a < b.
(xii) x = [c,b,a], y=v,[b,a,c] lv,[c,a,b]v; provided a, b and ¢ are commutators
and a << b < ¢, where
1= [a, C, [C> bJJ [C, b) [b> a, C]])
v, =[c,b,[b,a]][b,a,[a,c,b]][a,c, [c,a,b]"!] and
V3 = [b> a, [a, C]] [a> C, [C, b) a]]

The notation is extended to larger expressions by recursion over their height:
(xi1) If e:a,—a, then e: a7'—ay! and for every beA,e:a, b—>a,b, ¢:ba,—>ba,,
e:[a,,b]—[a,b] ande: [b,a,] —[b,a,].
(B) Write I': x -y if there exists a finite sequence (;)¥_, (k = 0) of expressions such that uy = X,
u, =yande:u,_—u; (1 <i<k).
Again the relation E: X -y is reflexive and transitive and Part (A) (xiii) of the definition
holds just as well for E as for e.

DeriniTION 9-2. (1) For each ac W and non-negative integer n the element a(+ 1)" of W s defined
recurswely: a(+1)° = a and, for n > 0,

a(+ 1) =a(+1)""141.
For any subset ® of W, O(+1)"={p(+1)": g D}.
(i) If a,ff € Wthen § finitely dominates o tf a(+ 1) < f_for every non-negative integer n and

coarsely dominates aif a(+1)" = f for every non-negative integer n. If © and ¥ are two subsets of W,
1" dominates @ if ®(41)" 3 V' for every non-negative integer n.
LemMA 9-1. If D: X —y then E: X —yu where W is possibly empty but if it exists o(u) = o(X) +1
o) >o(x)+1, 2(u) > 2 (x)+{1} and wt (u) > wt (x) + 1.

Proof. Check the various parts of definition 8-1. For parts (A) (ii) to (viii) and (xi), £: X >y
by the corresponding part of definition 9-1, so the lemma is true with u empty. For the
remaining parts:

(A) (1) x =ab,y = ba. Then E: x—yu wherc
u =[a,b] and &(u) =d¢(a)+a(b) >d(x)+1
since ¢(X) = ¢(a)A ¢(b). The proofs that
c(u) =2 o(x)+1, 2u)>2(x)+{1} and wt(u)>wt(x)+1

in this and the following cases are s1m11ar and will not be given.
(A) (ix) x=[a"l,b],y=[a,b]"'. Then E: x—yu wherc

u=[b,a,a”'] and &(u)=3a(b)+d(a)+d(a)>a(b)+d(a)+1 =48(x)+1.
The proofif x = [a,b~!] is similar.

b
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BASIC COMMUTATORS 369
(A) (x) x=[ab,c],y=[a,c][b,c]. Then
E:x—[a,c][a,c,b][b,c]
—->yu
where u = [a,c,b][a, c, b, [b, c]] by definition 9-1 (A) (x) and (i). But then
o(u) =d([a,c,b]) >é([a,c])+1 >6(x)+1.

The argument if x = [a, bc], y = [a, ¢] [a, b] is similar.
(A) (xii) x=][c,b,a],y=[b,a,c] ![c,a,b] where a, b and ¢ are commutators and
a < b < c. Then, with the notation of definition 9-1 (A) (xii),
E:x—v,[b,a,c]lv,[c,a,b]v,
—-yu,
where u = v,[v,,y]v,[V,, [C,a,b]]v; by several applications of definition 9-1 (A) (i). To
show that ¢(u) > ¢(x) +1 it is sufficient to show that the shapes of the seven commutators

which are factors of v,, v, and v, are all > (x)+1.
(¢) o([c,b]) = o(c) = o(a) and so

>4([c, b,a,c])
> d([c,b,a]) +1.

Here the first step follows from commutativity of addition in W and the second by
definition 2-1 (v).

8) o([c,b, [b,a,cl])  >o([b,a,c])+1
> ([c,b,a)] +1.

() o(lc,b]) = o(b) = o(a) and so
#([c, b, [b, a]]) = 4([b,a, [c, b]])

>6([c,b,a,b])
>0([c,b,a])+1.
(9) , ([b,a,[a,c,b]]) >4([a,c,b]) +1
=d([c,a,b])+1
=¢([c,b,a])+1.
(€) &([a,c,[c,a,b]"!]) >6([c,a,b])+1
' =¢([c,b,a])+1.
&) o([c,a]) =a(b) > o(a) and so
7([b,a,[c,a]]) >4([c,a,b,a])
>6([c,a,b])+1
>0d([c,b,a])+1
(7) ¢([a,c,[c,b,a]]) >d([c,b,a]) 41 immediately.

48-2
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(A) (xiii) The result follows in this case by an easy induction over the height of x.
(B) The result follows in this case by an easy induction over the length & of the sequence
using lemma 8-5.

Lemma 9-2. Suppose E: X—y. Then
(1) If p: A= G 1is any description of a group G then Xp = yp.
(1) o(x) < o(y), 6(x) <8(y), 2(x) < 2(y) and wt (X) < wt(y).

Proof. (i) This follows easily from definition 9-1 by checking its various parts. All those
parts correspond to well-known group laws, except perhaps for (A) (xii) which can be
checked by expanding into a product of ap, bp and cp and their inverses and cancelling.

(ii) is a corollary of lemmas 8-5 and 9-1.

LEmmA 9-3

(i) Let xeBy, yeB and o(y)+-1= . Then E: Xy—>2zu (either Z or 0 possibly being
empty) whereze B, and o(u ) = B if they exist.

(1) Let XGBﬁ, yeB and 6(y)+1>f. Then E:xXy—2zu (either Z or u possibly being
empty) where Z € B s and 6 () > [ of they exist.

(i) Letxe B\F, yeB and 2(y)+{1} > V. Then E: Xy —2zu (either Z or @ possibly being
empty) where Z e BT and 2'(0) >V if they exist.

(iv) LetxeB,,yeBandwt(y) = ¢. Then E: Xy —zu (either Z or U possibly being empty)
where Z € B, and wt (0) = ¢+ 1 if they exust.

Proof. These results are proved by an easy induction over the length (as a product) of y
using definition 8-1 (A) (i) and lemma 9-1.

LeMmA 9-4

(1) Suppose a,fe W, [ does not finely dominate o and 0(X) = a. Then E: X—yu (eithery or
u possibly being empty) where'y € By and o(0) = f if they exust.

(ii) Suppose a,fe W, [ does not coarsely dominate o and 6(X) > a. Then E: X—>yu (either
Y or W possibly beng empty) where'y € B, and 6(u) > f if they exist.

(iit) Suppose D and Y are subsets of W, "Y' does not dominate @ and X (x) > ©. Then E: X —yu
(esther y or » possibly being empty) where'y € BT and 2'(0) > WV if they exust.

(iv) Let x be any expression and ¢ be a positive integer. Then E: X —yu (either y or  possibly
being empty) where 'y € B ,, and wt (W) = ¢+ 1 if they exist.

Proof will only be given for part (i1) : proofs of the other three parts are similar.

Suppose 7 is the least non-negative integer that o(+1)" > . The argument proceeds by
induction over n. If n = 0 then « = a(+41)° > f so that the lemma is true with y empty and
u=X.

Now suppose n > 0 and the result is true for smaller integers. Write f” = «(-+1)""!. Then
by the inductive hypothesis, E: Xx—y'u’ (either y" or u’ possibly being empty) where
vy € By (and hence y'e By) and ¢(u’) > f’ if they exist. If u’ is empty the lemma is true with
y =Y and u empty. If u’ is not empty then, by theorem 81, D: u’—v where ve B and
o(v) >o(u’) >f. By lemma 9-1 then E:u'—vz (z possibly being empty) where

0(z) »o(W)+1>p'+1 >f if it exists. Thus E:x—>y'vz. If v is empty or 6(v) >/ the
result is true with y =y’ and u = vz. Otherwise y’' € B/,, and §(v)+1 2> f'--1 > § so, by
lemma 9-3, E: y'v—yw (either y or w possibly being empty) where y e B 5 and o(w) >f
if they exist: the lemma is then true with u = wz.
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The reader may wonder why such pains have been taken with the exposition of this lemma
since it has been patently clear for some pages that elements of a group can be described by
basic expressions as the lemma implies. The reason is that the important part of the lemma
is not that such expressions exist, but that they can be arrived at by only those operations
listed in definition 9-1. Group theoretic results will presently be deduced by observing what
can happen to certain properties of an expression under these operations.

THEOREM 9-1. THE BASIS THEOREM. (A) Let F be an absolutely free group of rank 1 on free
generators ¥ = {g;}.-, and let p: A—F be the corresponding free description. Then
(i) For any o W, W, (F)IW, .\(F) is a free Abelian group, freely generated modulo W, , (F)

by the set {bp: b is a basic commutator, & < g(b) < a+1}.

(il) For any f e W, the restriction of the mapping p to the set B Y of basic expressions involving
only commutators of fine shape < [ is one-to-one into F/ I/V;g(F ) modulo W/}(F ).

(iii) Provided [ does not finely dominate o, the restriction of p to the set W, n By of basic expres-
stons involving only commutators of fine shape = a and < f is one-to-one onto the factor W, (F) [Wy(F)
modulo %(F ).

(B) With the same conditions as for ( )
(1) For any aec W, Wa( )/ w,, (F) is a free Abelian group, freely generated modulo
Wi (F) by the set {bp: b is a basic commutator, « <&(b) ¥ a+1}.

(i1) For any fe W, the restriction of p to the set B of basic expressions involving only com-
mutators of coarse shape ¥ [ is one-to-one into F| W 5(F) modulo Wﬂ(F ).

(ii1) Provided f does not coarsely dominate a, the restriction of p to the set W n B of basic
expressions involving only commutators of coarse shape > a and 3 f is one-to-one onto t/ze Sactor
Wa(F)/Wﬂ(F) modulo Wﬂ(F)

(C) With the same conditions as for (A),

(1) For any subset O© of W, WQ(F )/ w, +(F) ts a free Abelian group, freely generated modulo
Wo(F) by the set - {bp: b is a basic commutator, ® < Z(b) 3 ®+{1}}.

(i1) For any V' < W, the restriction of the maj)ping p to the set B of basic expressions involving
only commutators of shape set 3=V is one-to-one into F| W (F) modulo Wy (F).

(iii) Provided that V' does not dominate @, the restriction of p to the set W, n B of basic
expressions tnvolving only commutators of shape set > ® and 'V is one-to-one onto the factor
Wo(F)| Wy (F) modulo W (F).

(D) Let G be a group, free with respect to being nilpotent of class c, of rank 1 and freely generated
by % = {gi}i<:
Let p: A — G be the corresponding free description. Then
(1) v, (G)is a free Abelian group, freely generated by the set

{bp: b is a basic commutator, wt (b) = c}.
(ii) For any aeW and ® < W, the subgroups W,(G)nv,(G), W, (G)n7,(G) and
Wo(G) nv,(G) are free Abelian groups, freely generated by the sets

{bp: b s a basic commutator, wt (b) = ¢, o(b) = a},
{bp: b is a basic commutator, wt (b) = ¢, o(b) > a},
and {bp: b is a basic commutator, wt (b) = ¢, 2(b) > @},

respectively.
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(iii) For any o, fe W the restriction of p to the set W, n ]::” 50 B is one-to-one onto the factor

Ww.(G )/W( ) modulo Wy(G) and the restriction of p to the set W, n Byn By, is one-to-one onto the

Jactor 17 () /Wﬁ( ) modulo Wﬂ(G) For any subsets ® and Y of W, the restriction of p to the
set W n B\F n By, is one-to-one onto the factor We(G)| Wy (G) modulo Wo(G).

Proof. It will be noticed that the statement of the theorem contains analogous sets of
results for the fine shape, coarse shape and shape set subgroups. In each case the results for
the coarse shape subgroups can be inferred from the corresponding ones for the shape set
subgroups by substituting @ = {«} and ¥ = {f} and then the results for the fine shape
subgroups by invocation of the metatheorem of § 2. Thus only proofs of the results for shape
set subgroups need be given.

(D) (i) Itis clearly sufficient to prove this statement when 7 is finite. Let ¥ € y,(G). Then
there exists X € A such that Xp = x and wt (X) > ¢. By lemma 9-4 (iv), £: X—>yu (eithery
or u possibly being empty) where y € B, and wt (u) > ¢+ 1 if they exist. Then

Xp = (yu)p =yp

by lemma 9-2 (1). If y is empty or 1 then ¥ = yp = 1, otherwise it is a basic expression of the
formy = b¢tbg2... b%. Since y € B, each b, is of weight < ¢; but also, by lemma 9-2 (ii),
wt(y) = wt (yu) = wt (X) > ¢ so each b, is of weight exactly ¢. This proves that y,(G) is
generated by Xp where X is the set of basic commutators of weight exactly ¢. By the
conventional theory p maps the finite set Y of N—-basic commutators one-to-one into y,(G)
which is free Abelian, freely generated by Yp. By theorem 7-1, |X| = |Y|; the result follows.

(D) (i1) Now write X for the set of basic commutators of weight exactly ¢ and shape set
> ®@. By virtue of part (D) (i), it is sufficient to prove that Xp generates W,(G) n 7,(G).
First, Xp = W,(G) n y,(G) by definition 3-2. Now suppose x € W,(G) n 7,(G). Then since
x € W, (G) there exists X’ € A such that x’p = ¥ and X'(x) > ®. Bylemma 9-4 (iv), E: X' —>xu
(either x or u possibly being empty) where xe B, and wt (u) > ¢+1 if they exist. If x is
empty or 1 then x = (xu)p = 1. Otherwise ¥ = Xp and X is a basic expression of the form
X = b2 b, ... b,*. By lemma 9-2, X(x) > X(xu) > X (x’) 3> ® so each b; has shape set
> @. Since xe B, each b; is of weight < ¢. Finally suppose the b; are not all of welght
exactly ¢. Then let ¢’ be the least weight of the b, so that ¢’ < ¢. Form the expression X” by
deleting all commutators of weight > ¢’ from X. Then x"p = x modulo y,.,,(G) and x” is
a non-trivial basic expression involving only commutators of weight exactly ¢’ so, by (D) (i),
x¢7,,1(G) which contradicts x € y,(G).

(D) (iii) By induction over ¢: for ¢ = 0 this is trivial. Now suppose ¢ > 0 and the statement
is true for smaller ¢. By definition 3-2, p maps W, n B.F n B, into W »(G). Now suppose
xeG. Then by the inductive hypothesis, there exists X' e W n B.}, n B_,) such that
x'p = x modulo 7,(G). Wy (g). Thus there exists u € y,(G) such that x = (X"p) u. Butx and
x'pe Wy (G) souey,(G) n Wy(G).

By (D) (ii) there exists ue B, n W, of weight > ¢ such that up = u. Then (X'u)p ==«
and by lemma 9-3, E: x'u—Xz (either X or z possibly being empty) where x € B,,, and
wt(z) = c+1 if they exist. If X is empty or X(x) > ¥ then x = 1 = lp modulo W,(G) and
leW n qun B, Otherwme x=Xp and xe B,,. But X(x) > 2(xz) > 2 (x'u) > ® by
lemma 9-2 (11) SOX € W and deletlng any commutators of shape set > ‘P’m x will not change
xp modulo W, (G), so X may be chosen e B . This proves that p maps W n BT n B, onto
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Wo(G) W (G) modulo W (G). Now suppose X andy € Wd, n ﬁ.l, n B, and xp = yp modulo
Wy (G). From x form the expressions X, by deleting all commutators of weight ¢ and x, by
deleting all commutators of weight < ¢. From y form y, and y, similarly. Then

X, ¥, €Wy n ]AB‘,, nB,_,, and Xx,p=y,;pmoduloy,(G).

W.(G) so by the inductive hypothesis x, = y,. But x can be converted into X, X, by inter-
changing the position of commutators of weight exactly ¢ with others, so (X,X,)p = Xp.
Similarly, (y,y,)p =yp and thus X,p = y,p modulo W,(G). But x, and y, are basic
expressions involving only commutators of weight exactly ¢ and shape set 3 ¥. Thus
X, =Y, by (D) (i). Rg\ferring to definition 6-2 (B), x = y.

(C) (ii) Let x,y e By, and xp = ypmodulo W,,(F). Since X and y are products of finite
length, there exists aninteger ¢ such that X, y e B(C) and, since Bm =A,X,y€ Wm trivially.
Thus x yeWm n B n By, and xp = yp modulo W (F). y,(F). Hence x = y by (D) (ii1).

(C) (ii1) By virtue of (C) (ii) it is sufficient to show that the restriction of p to Wo n B
is onto Wy (F) modulo Wy (F). Suppose then that x € Wy (F). Then there exists an expression
X such that Xp = x and 2'(x) > @. Then by lemma 9-4, E: x> yu (either y or u possibly
being empty) wherey e Bq, and 2'(u) > ¥if they exist. If y is empty or 1, = up = 1 modulo
We(F). Otherwise x = yp and y e Wd, B\, by lemma 9-2.

(C) (i) That Wo(F)]We.,q(F) is Abelian is obvious. The remainder of this part is now
a corollary of (C) (ii) and (iii).

10. Lie rings
The theory developed in this paper may be applied to Lie rings in a simplified form. This
will not be expounded in detail here; instead the two crucial lemmas will be given and then
the details may safely be left to the reader.
In the language used in this paper, a Lie ring may be defined conveniently as follows.

DEeFINITION 10-1. A Lie ring L is a describable algebra in which the effects of the operators ¢, v, u
and y are written
e=20
XY = —x
xyp=x+y, forany x,yel
XYy =xy
and with the laws:
(i) L is an Abelian group with respect to p, v and ¢,
(i) x(y+z) =xy+xz and (x+y)z=xz+yz,
(iii) xx =0,
(iv) (xy)z+(y2) 2+ (22) y = 0.
Immediate consequences of these laws are
(v) ay = —yx,
(vi) x(—y) =(—#)y = —(x9),
(vil) x0 = 0x = 0.
Hence the special collecting process operates anywhere in a Lie ring, in the following
sense.
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LEmMMA 10-1. Let L be a Lie ring and p: A — L a description of L. If D: Xy then Xp = yp.
Since a Lie ring is defined in terms of laws, the idea of a free Lie ring is tenable. M. Hall Jr.
(1950) has proved (restating his theorem 31 in the language of this paper):

If L s a free Lie ring, freely generated by the set ¢ = {g;},,, and p: A— L is the corresponding
Sree description of L, then the N—-basic commutators are mapped one-to-one into L by p and their images
Sorm a basis for L (that is, they generate L freely qua free Abelian group).

This makes possible

LEMMA 10-2. Let L be a free Lie ring, p: A— L a free description of L and W any shape range.
Then the W-basic commutators are mapped one-to-one into L by p and their images form a basis for L

Proof. (1) Let xe L. Then there exists X € A such that xp = x and then, by theorem 81,
D: x>y where y is a basic expression. By lemma 10-1, x = yp. If y = 1 then x == 0; other-
wise y is of the form y = b,» b,*2... b,*, where each b, is a basic commutator, and then
x =a;(b;p)+oy(byp)+... +a,(b,p). This proves that the images of basic commutators
under p generate L qua Abelian group.

(if) By the same argument, using part (iii) of theorem 8-1 also, the set

{bp: b is a basic commutator, wt (b) =c¢}
generates y,(L)/y,.,(L) modulo y,,,(L) and then, by the theorem of M.Hall Jr. quoted
above and theorem 7-1, this set is a basis for y.(L)/y,.,(L)modulo y,,,(L).

(ii1) It is now shown that the restriction of p to B, maps this set one-to-one onto
Lly..(L) moduloy,,,(L) byinduction over ¢. Let xe L. Then by (1) there cxists a W-basic
expression X such that Xp = x. If wt (X) = ¢+1 thenx = 0 = lp moduloy,, (L) and 1€ B ,,.
Otherwise form the expression X’ by delcting all commutators of weight > ¢+1 from x.
Then x’ € B, and X’p = x modulo y_,,(L). Thus p maps B, onto L modulovy,,,(L). Now
suppose X,y € B, and Xp = yp moduloy,,,(L). From X form the cxpressions X, by deleting
all commutators of weight ¢ and X, by deleting all commutators of weight < ¢. From y form
y, and y, in the same manner. Then X,,y, e B,_}, and X, p = y,pmoduloy,(L) so by the
inductive hypothesis x, =y,. But (X,X,)p=Xp=yp= (y,¥,)p modulo y.,(L) so
X,p = Y,p modulo y,,,(L). But X, and y, are basic expressions involving only commutators
of weight exactly ¢, so X, =y, by part (ii) of this proof. Now X, =y, and X, = y,s0X =y.

(iv) Finally, let x and y be two basic expressions such that Xp = yp. Then there exists an
integer ¢ such that X,y € B(,,; then Xp = yp modulo y.,,(L) so x =y by part (iii) of this
proof.

11. Fine shape subgroups as products of coarse ones

It has been mentioned that, for any expression X, ¢(X) < o(x). It is not difficult to con-
struct examples for which this order relation is strict. On the other hand, a weakened form
of the opposite relation may be established as follows:

LemMmA 11-1. Let X e A. Then there exist uj,,, ..., u, € A such that E: Xx—>u,u,...u, and
d(u,) = o(x) (1 <i<k).

Proof. By induction over the height of x.

LemMA 11:2. Let W be a shape range and o.€ W. Then, for any group G,

W.(G) = gg We(G).
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BASIC COMMUTATORS 375
Proof. For any £ > «, Wg(G) < Wy (G) < W,(G) by theorem 31 (iv) and (vii). Thus
T () < W,(6).

(za
Now suppose x € W,(G). Then there exists X € A such that Xp = x and ¢(x) > «. By lemma
121, E: Xx—>uu, ..., where ¢(u;) = 0(X) = « (1 < i < k). Then, writing ¢(u,) = £

X =Xp = ulp.uzp...ukpe};[ Wg(G).

This lemma, together with theorem 3-1 (viii), shows that the three types of shape sub-
groups can all be represented as shape-set subgroups.

12. Dustinctness of shape subgroups

The question as to when the various shape subgroups are nontrivial and when they are
different from one another for an arbitrary group G is obviously a very complicated one,
and one which depends very much on the special properties of G. However, if G ~ F, is
an absolutely free group of rank at least 3 the answer is very simple: for any two subsets ®
and ¥ of a shape range W, W, (G) = Wy(G) if and only if ® and ¥ are equivalent under
the pre-order <. This, together with the results of the previous section, allows all the shape
subgroups to be compared; in particular, for a,f € W the propositions

a=f, W,(G)=W,G) and W,(G)=Wj(G)

o
are equivalent. This is proved in this section.
The proof when the number of generators is 3 depends on the property of a shape range
W that any o € W other than 1 orco may be written in the form

o= 14oay+a;+... 4+,

where k>0, 1 =q,<a; <...<q,and for each r (0 <r<k), 1+ay+a,+...4a,=>a,,,.
The proof of this in turn involves something very much like a collecting process operating
upon such ‘formal sums’ in I, This appalling prospect may be circumvented however by
considering the properties of commutators in A when the number of generators is infinite.

DerintTION 12-1. For any commutator € and for any i < 7, the number of times ¢ mentions g,
written u;(C), is defined recursively over the weight of c:
i) w(g) =1 ¢ i=j,
=0 if i].
(i) p;([a,b]) = p(a)+p;(b).

LemMA 12-1. Suppose ¢ is a non-basic commutator which mentions each generator at most once (that
is, f;(€) = 0 or 1 for every i < 7). Then there exists a commutator €' such that ¢’ < ¢, §(c’) = ¢(c)
and, for each v < 71, p;(¢’) = p;(c).

Progf. The argument proceeds by induction over the weight of ¢. Since ¢ is non-basic, at
least one of the conditions of definition 6-2 (A) must fail for this commutator.

Suppose ¢ = [c,, C,] and ¢; is non-basic. Then clearly ¢, mentions each generator at most
once so there exists ¢] such that ¢} < ¢, &(c}) =&(c,) and, for each i < 7, g,(c]) = y;(c,).
Then ¢’ = [}, ¢,] is the required commutator. The proof if ¢} is non-basic is similar.

49 VoL. 264. A.
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Now suppose ¢ = [¢;, ¢,] and ¢, < ¢,. Then, since ¢ mentions each generator at most
once, €; = €, S0 €; < C,. Then ¢’ = [¢,, ¢,] is the required commutator.

Finally, suppose ¢ = [¢,;, C;s, C,] and €, > €,. By virtue of the first possibility considered,
it may be assumed that ¢;; > ¢;,. Then, by the proof of lemma 8-3, ¢’ = [¢,;, Cy, Cy,] is the
required commutator.

CoROLLARY. Let the number of generators of A be infinite and let o € W (o == 00). Then there exists
a basic commutator of shape exactly o in A.

Proof. By an easy induction over «, there exists a commutator ¢ € A which mentions each
generator at most once for which #(c) = «. If ¢ is non-basic it may be replaced by an earlier
commutator with the same properties. But the set of commutators is well-ordered by < so
there exists a basic commutator with these properties.

Lemma 12-2. If a e W, a 4= 1 or oo, then it may be written in the form
a=1l4ay+a,+...+a, (k=0),
where 1 = ay <oy < ... <o and for eachr (0 <r <k), 14oy4a;+...4+a, =,

Proof. Form an algebra A of expressions with an infinite number of generators. Then by
the corollary to lemma 12-1 there exists a basic commutator ¢ of shape exactly a in A. But
then ¢ may be written in the form

c=[8;2,a,,8,...,2] (£=0),
where g, > a,<a, <a,<...<a;andfor eachr (0 <7 <k),
[8:,20,8),...,8,] >a,,,
Writing «; = o(a;) (0 < ¢ < k) the lemma follows.
This result having been obtained, the three-generator case may be considered.
Lemma 12-3. Let W be a shape range and o be an element of W other thanco. If the number T of
generators of A is at least 3 then there exist three distinct basic commutators of shape exactly o in A.
Proof. When « = 1 the result is trivial—g,, 8, and g, are the required commutators.
Now suppose that @ > 1. Itis proved by induction over £ that, however « may be written
in the form
o=14ay+a;+...+a,

where o, < «,,, <1+ay+...+a, (0 <r<k) and , =1, there exist at least three basic
commutators of the form
a= [gb aO) a1> ceey ak]

in A where o(a,) = a, (0 <7 <k).

Suppose then that « may be written in the form given above. If £ = 0 then a = 11 and
the required commutators are [g,, 8,1, [&,, 80] and [g,, 8,]. Now suppose that £ > 1. Then
Uy < < 140+ ...+, and there exist three basic commutators

a= [gz’ aOa ala "'>ak—1]) al = [gi'a ab: a,la "',a;c—l] and a” = [gi"aag> aII’) "')a;;—l],
where ¢(a;) = ¢(a)) = o(a)) = a;(0 <7 <k).Bute,_; <14ay+0o,+...4+a,_, so there are
three possibilities:

(i)’ If ) = < 140p+0o;+... 4o, then the required commutators are [a,a,_,],
! n 14
[a’,a;_,] and [a",a]_,].
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(i) Ife, ; <a <l+ay+a;+...4+a_, let b be any one of the three basic commutators
of shape a;. Then the required commutators are [a,b], [a’,b] and [a", b].

(iii) Finally,ife,_; <, = 14ay+a;+...+0;_; thensince a, a’ and a” are distinctit may
be assumed thata < a’ < a”. Then therequired commutatorsare[a’,a],[a",a]and [a",a"].

THEOREM 12-1. Let ® and V' be subsets of a shape range W and F be an absolutely free group of
rank at least 3. Then Wo(F) = Wy (F) if and only if ©< .

Proof. By virtue of theorem 3-1 (iv) it is sufficient to prove that if ® KW then
Wo(F) + We(F). Suppose then that ® € ¥': then there exists ¢ € ¥ such that

e =9 <Y,

thatis, ® K {¢'}. Let p: A—F be a free description of . Then the number of generators of A
isatleast 3 so, by lemma 12-3, there exists a basic commutator ce A such thaté(c) = o(c) =y.
Then X(c) = {y} # ® and thus cp =+ lp modulo W, (F) by the Basis Theorem (theorem
9-1 (¢) (ii)), that is, cp ¢ Wy (F). But X(c) = {y} > ¥ so cp € W (F). Then

cp € We(F) — Wo(F)
s0 Wo(F) + We(F).

This theorem establishes the facts concerning distinctness of shape subgroups mentioned
at the beginning of this section.

As regards whether rank 3 is best possible, clearly one generator is not enough to do more
than distinguish the whole group (W} (F), W, (F) and W (F) whenever 1€ @) from the trivial
subgroup (all other subgroups). For some particular shape ranges, such as N~, two
generators are enough. An example for which two generators are not enough must use the
language and results of chapter III. If K = (k;)7, is the sequence k; = 2 (all 7), then

Qaa(Fz) = Q(sz(Fz) = 52(F2) and Q82+1(F2) = Q32+1(F2) = 32(F2) n 7’5(F2)'

But it is well known that for a two-generator group these subgroups are the same.

13. Partial collection

The ‘non-domination’ restriction appearing in lemma 9-4 and consequently in theorem
9-1 (A) (iii), (B) (iii) and (C) (iii) is disquieting: it means that there is no guarantee that an
arbitrary expression can be collected at all. That this restriction is real and not just due to
an inadequacy in the method of proofis demonstrated in appendix I where it is shown that
if § finely dominates « and provided that the rank of the absolutely free group F'is at least 3,
there exists an element in W, (F) which cannot be described by a basic expression modulo
Wy(F) at all.

In default of this, a property which would be a good second-best is as follows.

DEerFINITION 13-1. A shape range W is partially collectable if, for any ® = W, any description
p:A—>G of a group G and any x e G—Wy(G), there exists a non-negative integer ¢ and a basic
expression X € Bg n By, such that X & 1 and xp = x modulo Wy (G) .7,,,(G).

In chapter III it will be shown that polyweight ranges have this property and its import-
ance will emerge asitis used in proofs. Meanwhile, some elementary properties are exhibited
for later use.

49-2
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Levua 13-1. Let W be a shape range. Then the following three properties are equivalent.
(i) W is partially collectable.
(ii) For any ® = W the relatively free group F (QB(D) of any rank is residually nilpotent.
(iil) For any ® = W and any prime p the relatively free group F (QB(I,) of any rank s residually
a finite p-group.
Proof. The equlvalence of (i) and (ii) follows immediately from the Basis Theorem.
Writing G = F (QB(D) the same theorem implies that G/y,(G) is torsion-free, which makes
the equivalence of (ii) and (iii) obvious.

LeMMA 13-2. Let W be a partially collectable shape range. Then
(i) For any a.c W, any description p: A— G of a group G and any x € G—W,(G), there exists
a non-negative integer ¢ and a basic expression X € B, n By, such that .

x4+ 1 and xp = xmoduloW,(G).y.,,(G)
(i) For any o e W, any description p: A—G of a group G and any x € G— W (G), there exists
a non-negative integer ¢ and a basic expression X € B, n B, such that
x 41 and xp = xmodulo W, (G).y,..(G).

Proof. Tt has been observed that fine and coarse shape subgroups may be expressed as
shape set subgroups. The result follows immediately.
The next lemma is a straightforward illustration of the use of this property.

LemuMa 13-3. Let W be a partially collectable shape range, ® and ¥ subsets of W and F an
absolutely free group. Then Wo(F) 0 We(F) = Woywl(F).
Proof. By virtue of theorem 38-1 (vi) it is sufficient to prove that if x ¢ Weyw(F) then

x ¢ Wo(F) n We(F). Suppose then that x ¢ Woyw(F). Then there exists a non-negative
integer ¢ and a basic expression X € Bgyw 0 B, such that

x 41 and xp =xmodulo Wy, ¢(F).7,(F).

Since X = 1it may be written in the form
X = blaub2a2”‘ bkak (k> ].)

and, since X e ]/\3(1,\,% X(b,) # ®Vv W so that either X(b,) ¥ ® or X(b;) * Y. It may be
assumed without loss of generality that X (b,) } ®. Then by the Basis Theorem (theorem
9-1 (D) (ii1)), xp ¢ Wo(F).7,(F) and thus x ¢ We(F).y,(F) since Woyw(F) < Wo(F). Hence
x¢ Wo(F) = Wo(F) n We(F).
CuAPTER I1I. POLYWEIGHTS
14. The shape

DEerFINITION 14-1. Lot K = (k)7 be a sequence of integers, each > 2. For each non-negative
integer r, let K, be the finite sequence K, = (k;)i_,; in particular, K, is the empty’ sequence. For any
group G and each K, the subgroup Py (G) is defined recursively over r by

P(G) =G,  P(G) =7,(P,(G) (r>0).
The resulting series Py,(G), Py (G), ... will be called the polycentral series of G of type K.
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A group G s polynilpotent of type K, if P (G) = {1}. The class of all such groups is a variety,
the polynilpotent variety of type K,, denoted Py .

For each sequence K a shape range QX will now be defined which will have the property
that all the varieties 5, will be among the varieties QX. ‘

DrriNtTION 14-2. Let K = (k;)2 | be a sequence of integers, each = 2. Then
(A) QX s the set of all functions ¢: w—> w satisfying
() $li—1) =kd(j) (forallj=1),
() g(i—1) =h=g()>1 (forallj=1) and
(i) (0) > 1,
together with an extra element co. The function 1 € QX is defined by 1(0) = 1,1(j) = 0 (forallj =>1).
1t follows from (i) and (ii), since each k; = 2, that for each function ¢ == co there exists aninteger dy,
the depth of @, such that ¢(j) = 0<=j < dy. The depth d,, of oo is defined to beco.
(B) Addition is defined on QX as follows: if ¢ and y are functions (that is, ==00) then
(i) fdy=d, (= dsay) and $(d) -+ (d) = ky. then

G+9) () = $0) +90)  (Fd+1),
=1 (j=d-+1),

(i) otherwise ($+9) () = () +¥()  (for allj),

Addution is extended to encompass oo by
p+00 =0+4¢=-0c0 (forall §eQX).

(C) The fine order < on QX us defined lexicographically from the right: if ¢ and  are functions
(=£00) then ¢ < i 1f and only if there exists j, € w such that

#(Jo) <¥(Jo) and j=>jo=4(5) =¥ ().
This order is extended to encompass oo by: if ¢ is a_function then ¢ < co.

(D) The coarse order < on QX is defined: if ¢ and r are functions (== o) then ¢ < ¢ if and
only if (j) < ¥ (j) for all je w. For any function ¢, § < co.

The set QX together with this addition and orders 1s the polyweight range of type K. Subject to the
proof given in this section that QX is in fact a shape range, the associated fine shape, coarse shape and
shape set are called the fine polyweight, coarse polyweight and polyweight set of type K and
denoted w¥, #% and 11X respectively.

The remainder of this section will be occupied with a proof that QX is indeed a shape
range. For clarity this proof will be broken down into several lemmas.

It follows immediately from part (A) of the definition that Q¥ is closed under addition.

For use in the following lemmas, some simple properties of the orders should be remarked:

PLY=¢<Y, dy<dy=9¢<Yy, $<Y=dy<d,
(@ay) () =min{g(j), ¥(j)} and (V) (j) =max{g(j), ¥(j)}

LeMMA 14-1. Q% is (fully) well-ordered by the fine order <. The least element is the function 1,
the greatest, the element oo.

Proof. A non-empty subset X of QX either consists of the element oo alone, in which case
it has a least element trivially, or else it contains a function ¢ = co. But then the set of all
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functions < ¢ in X consists of functions whose support is a subset of the (finite) support
of ¢. Since the order is lexicographic the lemma follows.
LEMMA 14-2. If a,, o, and f are functions (==00) in QX and ay < ay, then oy +f < ay +p.
Proof. Since a, < a,, d, <d, and there exists joew such that a;(jo) < ay(Jo) and
j>jo=a;(j) = ay(j). Four cases now arise: case 1, d,, = d,, = dj, case 2, dyFd,, = d,,
case 3, d; = d,, < d,, and case 4, dg=+d,, <d,

Case 1, d,, = d,, = d; (= d say). Then j, < d. Now
(@,4+p) (d+1)=0o0r1 and (a+p)(d+1)=0o0rl

and if (¢,+f) (d+1) =1 then a,(d)+p(d) = ks But jy<d so a,(d) < ay(d). Thus
oy(d) +f(d) = ky,, and then (2,+p) (d41) = 1 also and so in any case,

(0 +5) (d+1) < (@ +f) (d+1).
Thus j > j, = (¢ +8) () < (2,+4) (j) and, since j, < d,
(o1 48) (o) = a1(Jo) +B (o) < aa(Jo) +F(jo) = (@2+F) (Jo)-

This means that «; +/f < ay+f.

Case 2, dy = d,,, = d,,,. Then

J>Jo= (+8) (§) = o (f) +A() = ax() +A(J) = (@a+5) (j)

and (o 4+8) (o) = aa(Jo) T8 (o) < @a(jo) +8(jo) = (#2+F) (Jo)-
Thus a,+f < ay+p.

Case 3,dy = d,, < d,, Letd =dy=d,,. .~ Then j, = d,,,. For j > d+1, (¢;+f) (j) = 0 and

(g tF) () — ) = 0 also (ay +) (@-+1) = 0 or 1 and (6 (d+1) = e(d+1) > 1.
Thusj > d+1= (1 +) () < (2a+5) (). But 0y(d) < ks, and a5(d) = kg, 50

(0, +5) (d) < (az+F) (d).
Thus o, +/f < ay+p.
Case 4, dy + d,, < d,,. Then

J>Jo= (48) () = w(G) +A1() = 02(f) +A() < (0 +£) ()
and (o1 48) (Jo) = a1 (Jo) +B (o) < @x(Jo) +£ (o) = (#2+F) (Jo)
and again a, +f < ay+p.

Lemma 14-3. If a,, a, and § are functions (=#=00) in QX and a, < ay, then a;+f < ay+p.
Proof. By the definition of the coarse order, for all jew, (j) < ay(j) and there exists

Jjo€ w such that a,(jo) < a(Jo)-

First, suppose that d,, = d; and write d = d,,, = dj. Then (¢;+p) (d+1)=0o0r 1 and if
(a;+p) (d+1) =1 thenocl(d) +/)’(d) =k, Buttheno&Z(d) +4(d) = kypq50 (ag+f) (d+1)>1
Thus in any case (¢, +f8) (d+1) < (ap+f) (d+1). But, for j+d+1,

(o 48) () = w () +AU) < () +A() < (@2 +F) ()
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so (a;+p) (J) < (ay+pf) (j) for all j e w. If j, == d+1 then

(@1 +8) (Jo) = 21 (J0) +A (o) < az(fo) +F(Jo) < (@2 +F) (Jo)
and if j, = d+1 then ay(d+1) =1 so ay(d) =k, > o;(d) and (a;+f) (d) < (ay+p) (d).
Thus in any case o; +£< a,+f.
Now suppose that d,, = d;. Then, for all j e,
(@ +8) ) = () +£() < () +E() < (22 +5) (J)
<

and (a1 +8) (Jo) = a1(Jo) +B(J0) < a2(jo) +B(Jo) < (%+£) (Jo)-
LEemMA 14-4. Suppose a, f and y are functions (==00) in Q¥ and a < f <y. Then
Q) y+fta=ytatf < pratyand
(i) y+p+a=y+atp<ftatyifand only if d, = dy < d,.5 < d,.
Proof. Four cases are considered separately: case 1, d, = dy =d,, case 2, d, = d, < d,,
case 3,d, <d;=d, and case 4, d, < d, < d,.
Case 1, d, = dy = d, (= d say). Suppose that a(d) +f(d) +y(d) < k.. Then, for all j,
(r+B+a) () = (y+a+p) (j) = (B+ea+y) (/) =) +£() +7()-
Otherwise a(d) +/f(d) +7y(d) = k,,,; and then, for j 4 d+1,
(y+p+a) (j) = (r+a+p) (j) = (B+ety) (4) = () +£(U) +r()
and (y+A+a) (d+1) = (y+ea+p) (d+1) = (f+aty) (d+1) = 1.
Case 2, d,, = dy < d,. Let d = d, = dy. Then dj +d,, so (y+8) (j) =B(J) +y(j) for all ;.
Then d,, ;= d, *+d, so
(y+F+a) (j) = a(f)+B()+7(j) forally.
Similarly, (r+a+p) (G) = a(h)+() +7(j) forallj.
Now d,=dy=dsods,,=dord+1.1fdy,, = dthendy,, +d, so
(B+aty) (j) = a(g) +A(D+r(j) forallj.
Ifdy,,=d+1thend, =dy<d, ,<d, and

(B+a) () =e()+£() (G +d+1),

=1 (j=d+1),
and then (B+a+) () = o) +B()+71(j) (G +d+1),
= y(j)+1 (j=d+1).

Then, since a(d+1) =f(d+1) =0, f+a+y>y+f+a=y+a+p.
Case 3, d, < dy=d,. Let d = dy = d,. Then there are two subcases:
case 31, f(d)+y(d) =k, and case 32, f(d)+y(d) <k,
Case 3-1, f(d)+y(d) = k;,,- Then

+8) () =BU)+7()  (i+=d+1)
=1 (j=d+1)
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and so d,,, ;= d+1=a. Thus
(y+A+a) (§) =a(f)+£() +r() (G +d+1)
1 (j = d+1)

since a(d--1) = 0. Now d,-d,, so (y+a) (j) = a(j)+y(j) for all j. Thus dypy=d,=d.
But then (y-+4) (d) +A(d) = 7(d)+4(d) = kyyy 50

(y+atp) (j) = i) +B() +7(j)  (+d+1)
—1 (j=d+1)

so that y -}-a+f = y+f+a. Similarly, f+a-+y = y+f+a.
Case 32, f(d)+7(d) < kyyy. Then (y+p) (5) = F(j) +y(j) for all j. Thend,, ;= d=+d,
so that (r+A+a) (j) =o(j) +A(G) +7(j) forally.
Now d,, = d=+d,sothat  (y+a)(j) =a(j)+y(j) forallj.
Thus d,,,, = d = dy. But (y+a) (d) +(d) = y(d)+(d) <Kz 50 that
(y+a+p) (j) =a(j)+£() +r(y) for ally.
Similarly, (B+a+y) () = a(f) +A() +7(j) forally.
Case 4, d, < dy < d,. Then
(y+p+a) () = (r+a+h) (j) = (B+a+y) () = () +£() +7(y) for allj.
The condition a < f < y may be removed from part (ii) of the lemma as follows.

CoROLLARY. Suppose o, ff and y are functions (=+00) in QX. Then
(i) y+pf-+a and f+a+y are comparable (under the coarse order) and

(ii) y+p+a<pf+a+tyifandonly ifd, = d, < d,.,=d,.
Proof. The various order relationships that may exist between a, £ and y are checked
scparately. If « < # < y the result is given by the lemma. Supposc < y < §. Then

y+pf+a=p+y+a (by commutativity of +),
= f+a+y (bythelemma).
But £ >y so dy « d,. Now suppose f < a < y. Then

y+Bh+a<atf+y
ifand only if d, = d; < d,, , < d,, by the lemma, and
a+pf-+y=p+aty (bycommutativity of +).
Proofs for the other three cases are similar.

DEFINITION 14-3. (i) With the notation of definition 14-2, for each non-negative integer 1, a
(G>7)

= (=7
CEE (D) (<)

the definition of 0X(J) for j < r being recursive over r—j.
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(ii) For any positive integer n, a_function ndX € QX is defined recursively
1K = o,
nof = (n—1)6f+05 (n>1).
That ¥ is indeed a member of Q¥ follows from this definition and definition 14-2 (A).

That n0X e QX then follows from the closure of Q¥ under addition.

Lemma 14-5
i) Foro<j<r, ,
05 (j) = 11 ki
i=j+1
(ii) For any positive integer n, ndX may be defined alternatively by
noz(j) =0 (J>r+1)

. 0 ?f n< kr+1 N
_{1 if ”>kr+1} G=r+1)
= =)
=k 05 (j+1) (J<rn).

(iii) For any function ¢ € QX, ¢ =V §(r)of.

r<dp
(iv) For0<i<j<r, 0K (1) = 0X(7).0K (7).
Proof. These all follow immediately from the definition, part (iii) by using definition
14-2 (A) (i).
LeMMA 14-6. QX—{o0} is generated by 1 under addition.

Proof. By virtue of lemmas 14-1 and 14-2, it is sufficient to show that for each ¢ € Q¥ other
than 1 or co, there exist ¢y, ¥, € QX such that ¢ = ¢, +,. Three cases are considered,
depending on the values of ¢(d) and ¢(d— 1) where d = d,;.

Case 1, ¢(d) = d. Let ¢, = 6% and define ¢, by ¥,(7) = ¢(j) —¥,(y) for all j. Then for

dlJ=L g (-1) = $G—1) =t (G—1) = k() — k¥ () = & ()
and Yo(j—1) = k;=j<d (since @(d) <kyy)=,(j) =1. Trivially ¢,(0) > 1. Hence
Vo€ QX. But now dy, = d;,, = d and ¢, (d) +V,(d) = ¢(d) < kyyy 50

, W1+72) (1) = () +¥:00) = ¢(J)
for all j.

Case 2, §(d) = 1 and §(d—1) > k,. Write §, = 0§, and define ¢/, by ¢,(j) = 4(5) —¥1(J)
for all j; the argument now goes as before.

Case 3, §(d) = 1 and §(d—1) = k,. Write ¢, = 05, and define ¢, by ¥»(j) = ¢(j) —#:1(/)
for all j 4= d, ¥,(d) = 0; the argument goes as before.

THEOREM 14-1. With the notation of definition 14-2, QX is a shape range.

Proof. The parts of definition 2-1 are checked.
(i) The fine order < (fully) well-orders Q%, 1 is the least element and co the greatest by
lemma 14-1. That the coarse order < is a lattice order follows immediately from its
definition.

50 Vot. 264. A.
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(ii) QX is closed under addition and Q¥—{co} is generated by 1 under addition by
lemma 14-6. That addition is commutative follows immediately from its definition.

(iii) By the definition of addition, &,/ - 00 =a-+f =+ c0 and a0 =o0. Now suppose
@, < a, and f = c0. If ¢, =co then a,+f <0 = a,-+f and 1foc2#:oo then a, +f < ay+f by
lemma 14-2.

(iv) Ifa == o0, then, by the definition of addition, « < «-§. That

<oy, and fHoo=>o <yt

follows as above from lemma 14-3.
(v) Suppose « < f < y. If any oneisco then y+f+a = y+a+pf = f+a-y =o0, other-
wise y+f+a=y+a+f < f+a+y by lemma 14-4 (i).

LemMA 14-7. Let A be an algebra of expressions, X € A and #i: A— QX w: A— QX the coarse and
fine polyweights associated with QX. Then, writing ¢ = m(X) and § = #(X),

$(0) = 4(0) = wt (x).

Proof is by an easy induction over the height of x.

15. Partial collectability of polyweights

Suppose W and W’ are two arbitrary shape ranges. Then for any ae W the set W
(definition 3-1) is a subalgebra of A and hence a describable algebra. Consequently, for any
@ < W, the set W(D(W ) is defined (definition 3-2). Further, this is a fully invariant sub-
algebra of A and defines a product variety of groups, since for any description p: A—G of
a group G, (Wo(W,))p = Wi(W,(G)).

Lemma 15-1. Suppose K = (k;)i | is any sequence of integers, each =2 and K' = (k}); | is
defined by k; =k, (foralli = 1). Write Q = QX and Q' = QX'. Then for any function ¢ € Q with
the property $(0) = k, ¢(1) and any group G, Q¢(G) = Q;;,(ykl(G)), where ¢’ is the function defined
by ¢'(j) = $(j+1) for all j.

Proof. First it is necessary to observe that ¢’ € @’ so that Q;;,(ykl(G)) has meaning. Let
p: A—G be any description and write # = #X and #’ = #X. For any « € () such that d, > 1,
definea’bya’(j) = a(j+1)foralljew: then clearly ¢’ € Q" and for any o, f € @ of depth > 1,
@By = +B.

Firstis is shown that ¢4(G)

A~

< @y (74,(G)). This is accomplished by proving that, for xe A,
#(X)>a and d,>1=>Xpe Q¢ (7 (G)),

by induction over the height of x. If ht (x) = 1 then either X = 1 in which case

Xp = 1€ Qy(r,(G))

trivially, or else X = g, € G in which case dj,, = 0 and the implication is satisfied vacuously.
Now suppose thatht (x) > 1 and the implication is true for all expressions of smaller height.
Then there are three possibilities: if x = u~! or x, X, the result follows immediately from the
fact that Q;;,(ykl(G)) is a subgroup and if X =[x, X,], write #(x) =¢ (so that ¥ >a),
#(X,) = ¥, and #(X,) = ¥,. Then ¢ =, +¢, and four cases arise. ‘
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Case 1,d, = dy, = 0. Then (1) = 1since ¥ > aand d, > 1 andso ' = 1 and ¥(0) > £,
Thus wt (X) = ¢(0) > £, by lemma 14-7 and so

Xp € 71,(G) = Qi(1,(G)) = Qo (71,(G))
for e < ¢ and ¢’ =1 so that o’ = 1.
Case 2, d, =0, dy,>1. Then ¢, =19y’ >0a’ and so, by the inductive hypothesis,
X,p € Q.,(7,,(G)) ; but this is a normal subgroup of G and hence also contains [X, p, X,p] = Xp.
Case 8, d;, > 1, dy, = 0. The argument in this case is similar to that for case 2.

Case 4, d,/, >1 and d,, > 1. Then ¢| and ¥} exist and by the inductive hypothesis
X,p€ nyl(l’kl( )) and xzp € Q;&é(ykz(G)). But then, by theorem 3-1 (iV) and (v),

Xp = [%,0, %3] € Qiay; (11, (G)) = Qp(1,(G)) < Qe (7, (G))-

Now the converse inclusion will be proved, that Qqﬁ'(l’m( ) < Q¢(G). By definitions 1-3
and 3-2, N is the set of all expressions of weight = £,. It has just been remarked that this is
a describable algebra, so there exists some description p”: A’ — N;- where A’ is some algebra
of expressions: A’ may be the same as A provided the latter has enough generators. Here
two algebras of expressions are involved, so a little care must be taken with the definitions
of Q¢ and Q¢ (see definition 3-2, where it was assumed that only one algebra of expressions
was being considered). It will be assumed that Q¢ < A and Q¢ < A’ or, more precisely,

Q¢ ={x:xXeA, #(X) >¢} and Q¢, ={x":xX'eA, #(X') >¢'}.
Then Q¢(G) = 6¢p and @¢(yk1(G)) = 6;5,,0',0. It is now sufficient to show that (3;;',0' = 6¢.
This is accomplished by proving that
x'e 6;5 =>Xx'p'e (/j¢

by induction over the height of x. If ht (x’) =1 then either X’ =1’ (the identity element
of A’), in which case X'p’ = le Q¢, or else X' = g, (one of the generators of A’ ) in Wthh case
#'(x') =1 so that ¢(0) =k, and ¢(1) = 1. Thus Q¢ = Nj,andsox'p’e A'p Q¢ Now
suppose that ht (x) > 1 and the result is true for all expresAsions of smaller helght Ifx =u"!
or X, X, the result follows immediately from the fact that Q is a subalgebra. If X’ = [x], X}]
write #'(X") = ¢’ (so that ¢’ > ¢), #'(X]) = ¥ and #'(x3) = ¢5. Then y’ = y{+¢5. Define
YeQbyy(j) =y (j—1)forj>1and ¢(0) = £; ¥ (1) and define ¥, ¥, € @ similarly. Then
¥ > ¢ and, by the inductive hypothesis, :

x,p € an and X,p'€e Q%

so that X'p e (/j;h oy = (A)¢ c 6¢.

CoRrOLLARY 1. With the notation and premises of the lemma,

ﬁ?g == Q;y-mkl_l
COROLLARY 2. With the notation of the lemma, suppose O <= Q has the property that, for any
=kp(1). Th A A

¢E(I)5 ¢(O) 1¢( ) en Qq):gil)’-mkl—l
where O' = {¢': § € O}.

Proof. This follows from the lemma and theorem 3-1 (viii).

50-2
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CoroLLARY 3. With the notation and premises of the lemma,
D'QS == Q;g'-mkl_l.

Proof. Since a constructive definition has been given for polyweights which precludes the
possibility of the fine and coarse orders being the same, this result may not be inferred from
corollary 1 by means of the metatheorem of § 3.

However, since ¢(0) = £, ¢(1), lemma 11-2 gives

Qy(G) = g,I>I¢ Qe(G)

£(0)=k1£(1)

= TI Qx(r.(G))
gr=>¢’

= Q¢ (71,(G))
for any group G.

TaEOREM 15-1. Any polyweight range is partially collectable.

Proof. Write @S for the polyweight range defined by the sequence § = (2,2,2, ...). From
definition 14-2 it follows immediately that every polyweight range Q¥ is a subset of @ and
the coarse order defined on QX is the restriction to Q¥ of that defined on @ and thus, if ®
and ¥ are two subsets of QX then ® < Win @¥ifand only if ® < Win @ and ®is a totally
unordered subset of QXifand only ifitis a totally unordered subset of Q. This makes possible
the comparison of subsets of distinct polyweight ranges in a consistent manner.

The theorem is proved using lemma 13-1 (iii) by showing that the relatwely free group

(QK ) of any rank is residually a finite p-group for any prime p: notice that ¥ (DK ) = (DK )
where @, is the set of minimal elements in @, so it is sufficient to prove this statement only
for totally unordered sets ®@. This is accomplished by induction over the totally unordered
subsets of Q° using part (ii) of the corollary to lemma 4-1 so the inductive assumption
becomes: if ¥ is a totally unordered subset of any polyweight range Q* and ¥'< ® in QS
then the relatively free group F (ﬁL) of any rank is residually a finite p-group for any prime p.

Assume then that @ is a totally unordered subset of QX and the inductive hypothesis is
true. Write G = F (QK ). From the definition of addition there are four possibilities: 1 € @,
oo e O, there exists ¥ € QX such that y+1 € ® or, for every g € ©, $(0) = £, 4(1).

If 1 € ® then, since @ is totally unordered, ® = {1} so G is trivial and is thus (vacuously)
residually a finite p-group.

If coe ® then ® = {c0} so G is an absolutely free group which isresidually a finite p-group.

If there exists y € Q¥ such that 1 € @, write " for the subset of QX made by replacing
¥+1by¢in @, that is, Y = (O—{y+1}) u{y} and W, for the set of minimal elements in V",
Then Y, <D so I (QK ) is residually a finite p-group. Now let xe G—{1}. Then either
x¢ QE »(G), in which case there exists a normal subgroup N of G such that x ¢ Nand G/N is
a finite p-group since G/Q% (G) = ( &), or else x € Q& (G). But W, consists of ¢ together
with a subset of @ so ® does not coarsely dominate ¥y : then by the basis theorem, theorem
9-1 (Q) (iil), there exists a non-trivial Q¥-basic expression X € ﬁQK n Ok , such that xp = x.
But then there exists a non-negative integer ¢ such that x e BZ} so ngs 7,(G) by theorem
9-1 (D) (iii) which also implies that G/y,(G) is torsion free and hence residually a finite

p-group.
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Finally, suppose ¢(0) = £, ¢( 1) for every ¢e ®. Define K" and @’ as in lemma 151,
corollary 2. By that corollary = QK N1 and by the inductive hypothesis F (DK) is
residually a finite p-group. But sois (3, _,) and therefore, by a theorem of Baumslag (1963,
theorem 3) G is residually a finite p-group.

16. Polyweight subgroups as products of commutator subgroups

THEOREM 16-1. Let K = (k)2 be a sequence of integers, each = 2, let @ = QX be the corre-

sponding j)olyweig/zt range. Then for each non-negative integer r,

(1) Qy, =Dy, = Pg, and
(i) for any group G, Qs,(G) = @5,(G) = P, (G),
where 0, = 86X is the function given in definition 14-3.
Proof. (1) follows immediately from lemma 15-1 and its third corollary by induction over r
and (ii) is a corollary of (i). ‘
The major part of this section will be occupied by a closer study of the formula of lemma
5-1 for polyweights: first a constructive definition of U(g) is given and then some of the
redundancy removed from that formula, resulting in practical recursive expressions for the
polyweight subgroups of an arbitrary group G.
For the remainder of this section it will be assumed that a fixed polyweight range @ = Q¥
is being considered.

DerFINITION 16°1
() For each function ¢ € Q and each non-negative integer h, the function ¢ ,:w—>w is defined:
if h=dy and $(h) = ky,.,—1 then

$.4(J) = 9() (J==h or h+1)
(h+1 (J=h)
=1 (j = h+1):
and otherwise $.1() =90) (J=1h)
=g +1 (j=1).

The function _,: w—>w U {—1} is defined
6-n(J) = 4(J) (= )
=gh)—1 (F=A4).
The functions ¢, and ¢_, are not necessarily members of Q, for instance 1, and 1_, are not.

(ii) The sets H*(§) and H~(p) are defined to be the set of positive integers h such that ¢, € Q
and the set of non-negative integers such that ¢ _, € Q respectively, that is,

H*(§) ={h: h =1, §(h—1) = K, (¢(h) + 1)},
- H(§) = {h: §(h) > k1 4(h+1), $(R) > 1}
(iii) The sets U,(¢) and U,(9) are defined
U,(8) = {(@p): a = p, at+f = ¢},
Uy(9) = {(@,f):a+f =g, where heH*($)—H(¢), 2= p,A(k) =1}
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Lemma 16:1. U(¢) = U,(4) U U,(9).
Proof. First it is shown that U(¢) = U,(8) U Uy(4). It is sufficient to show that

U($)—U,(9) < Uy(9)-
Suppose then that («,f) € U(¢) — U,(#). Then a+F> ¢so (a+£f) (j) = 4(j) for all j e w and
there exists 4 € o such that («+/) (k) > ¢(j): suppose that kis the largest such integer. Then
dyip = h.Nowa = fsod, > dyand five cases arise: case 1, d, = dp = h and a(h) +f(h) <kj.,
$0 dy,5=nh, case 2, d, =d,, ,=h>dg, case 3, d, = dy=h—1 and a(h—1)+p(h—1) =k,
sod, ;=h,cased,d,=d; = hand a(h)+f(h) = k., 50 d,, 5 = h+1 and case 5, d, > k.
Case 1, d, = dg = h, a(h)+p(h) < ky,, and d, ; = h. Suppose «(h) > 1. Then ke H(«) so
«_,€ @ and thena_,< ¢ and a_,-+f > ¢ which contradicts the assumptionthat («, 8) € U(¢).
Thus «(k) = 1 and by a similar argument f(%) = 1. Thus (¢+§) (k) = 2 s0 ¢(k) = 0 or 1.
This gives rise to three subcases: case 1'1, ¢(h) = 0, case 1-2, ¢(k) = 1 and ¢(h—1) < 2k, and
case 13, ¢(h) = 1 and ¢(h—1) > 2%k,.
Case 1-1, ¢(h) = 0. Define o’ by
() =a(y) (U<h-1)
=1 (j=h-1)
=0 (j>h—1).
Then o'e @ and o’ < «. Further
@ +£) (G) = (@4+5) (4) = 80) (U <h—1),
(@' +f) (h—=1) = f(h—1) = k, > $(h—1)
since dg=~h and ¢(h) = 0. Thus o'+f>¢ contradicting («,f) e U(¢), so ¢(h) =0 is
impossible.
Case 1-2, ¢(h) = 1 and ¢(h—1) < 2k,. Define §’ by
FG)=£0) U<h-1),
= k=1 (j=h-1),
=0 (Jj>h—1).
Then f’ € Q and f’ < f. Further
(@4+£) () = (@+8) (4) = ¢(J) (G <h—1),
(a+8") (h—1) = a(h—1)+k,—1 = 2k,—1 = d(h—1),
(@+f) (h) = a(h) =1 = §(h),
so a-+/f" > ¢ which is another contradiction, so this subcase is also impossible.
Case 1-3, ¢(h) =1 and ¢(h—1) > 2k,. Then
$(h—1) = ky(¢(h)+1) and ¢(h) =1 so heH*($)—H(¢).

It has already been observed that f(h) =1, (a+4p) (k) =2 =¢(h)+1 and, for j >k,
(a+p) (j) = 0=¢(y). It thus remains to show that (a+£) (j) = ¢(y) for j < k. Suppose
(a+pf) (h—1) > ¢(h—1). Thena(h—1)+f(h—1) > ¢(h—1) > 2k,and soeithera(h—1) >k,
or f(h—1) > k,. If a(h—1) >k, then h—1e€ H (a) and then a_g,_;, €@, a_,_;,<a and
&__1y+/f > ¢ which contradicts («,f) € U($). Similarly, f(h—1) > k, yields a contra-
diction, so (¢+f) (h—1) = $(h—1).
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Now suppose, for some j < h—1, (a+f) (J) > ¢(J). Let j be the largest such integer, so
that “(J')Jr/)’(j) > ¢(y) and aj+ 1)+ﬂ(j+ 1) = ¢(j+1). Then ecither a(j) > k;y 2(j+1)
r B(j) >k (J+1). If a(j) >k, a(j+1) then jeH (a) so a;e@, a_;<a and
a;j+pf>¢ contradlctmg (2, 8) € U(¢). Similarly, £(j) > k;,,1f(j+1) yieldsa contradiction
so (a+pf) (j) =¢(y) forallj < h—1.
Case 2,d,=h> p. Ifa(h) > 1 then he H («) so a_,e Q, a_,<a and a_,+f > ¢ which is
a contradiction. Thus a(k) = (a+f) (k) =1 so ¢(h) = 0 and dy < k. Define «’ by

o (j) =ea(y) (U<h=1)
— k=1 (j=h—1)
=0 (j>h—1).
Then o’ € Q, o’ < & and &’ +/ 3> ¢ which contradicts (o, f) € U(g) so this case is impossible.
Case 3, d,=dg=h—1, a(h—1)+f(h—1) >k, and d,,;=h. Then (a+p) (k) =1 so
¢(h) = 0anddy < h.Supposethata(h—1)>2. Thenh—1e H™(a)soa_g_eQ, a_¢-<aand
«_p—1y+B > ¢ which is a contradiction. Thus a(k—1) =1 and by a similar argument
f(h—1) =1. Then k, = 2; but ¢(k) = 0so g(h—1) =0 or 1. '
Suppose that either ¢g(A—1) = 0 or ¢p(h—2) < 2k,_,. Define o’ by
@'(j) = a(j) (J <h—2),
=k_—1 (J=h-2),
=0 (j>h—2).
Then (@ +8) () = (a+8) () = 8(J) (J<h—2),
(" +p) (h—2) = 2k,_,—1 = ¢(h—2) (since dy = h—1),
(@' +8) (h—=1) = f(h—1) = 1 = §(h—1),
soa’e Qo' < wanda’+f > ¢ which isa contradiction. Thus ¢(h—1) = 1and ¢(h—2) > 2k,_,
soh—1 eH*(gb) H-(¢). Since k, = 2, ¢, (,_y, is given by

Sra-n(J) =¢(J) (J<h—-1)
=¢(h—1)+1=2 (j=h-1)
1 G=h
0 (>

so that (a+p) (J) =@, -1 (J) for j=h—1. Since f(h) =1, it remains to show that
(a+p) (J) = ¢(j) forj < h—1: the argument to this end is the same as that given in case 1-3.

Case 4, d,, = dg = h, a(h)+ (k) = k,,, and d,, , = h+1. Then (oc—|—ﬁ) (h+1) =1 and, by
the choice of &, ¢(h+1) = 1. Thus
a(h) +p(h) = (a+p) (h) > () = Ky = 2

and, since a = g, a(h) = f(h) so a(k) = 2. Thus ke H-(«) which yields a contradiction as
usual and this case is impossible.

Case 5,d, > h. Then (a+f) (j) =a(j)+B(j) forj < h+1so0
a(h)+p(h) > $(k) = ky1 $(h+1) = Eypya(h+1) + K01 f(h41)
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by the choice of & and then either
a(h) > kyya(h+1) or  f(R) >k f(R4-1).
If a(h) > ky, (k1) then, since d, > &, a(k) > 1 s0 h e H-(«) which yields a contradiction
as usual. Thus a(k) = k,, a(h+1) and f(k) > ky, f(h+1). If f(h) > 1 the same argument
yields a contradiction so f(#) = 1.
Now 4y < a()+p(h) = alh) +1 = kypyalh+1)+1 =Fkyp  p(h+1)+1

50 $(h) = kyyy p(h+1), b ¢ H(9), a(h) = §(k) and (a+p) (h) = $(h) +1.
Suppose ¢(h—1) < k,($(k)+1). Define " by
pFG)Y=80) (G<h-1),
:kh—"1 (]=h—l),
| =0 (j>h—1).
Thenf' e Q, f/'<fand (a+4)(j) = @+h) (1) (G<h—1),
(a4F) (h=1) = a(h—1) +k,—1 = ky(a(t) +1) =1 = ky(¢(R) +1) = (A—1),
(@+p) (7)) =a(j) =¢0() (G>h-1), |
s0 a+f' > ¢ which is a contradiction. Thus ¢(h—1) = k,(4(h)+1) and ke H*($). Since
B(k) =1 and ¢,,(j) = (a+p) (j) for j>h—1 it remains to show that (a+§) (j) = ¢(J)
for j < h—1.
Suppose (¢+f) (h—1) > ¢(h—1). Then
a(h—1)+p(h—1) > (h—1) = k,($(h) +1) = ky(a(h) +4 (1)
so either a(h—1) > k,a(h) or f(h—1) > k,f(k) both of which possibilities yield contradic-
tions as usual. Thus («+p) (k—1) = #(h—1). Suppose there exists j < h—1 such that
(@) (j) > ¢(j)- Let j be the largest such integer. Then
o(f) +B(j) > $(j) and a(j+1)+A(+1) =4(j+1)
so either « (§) > k;, a(j+1) or f(j) >k f(J+1) both of which possibilities again yield
contradictions.

This completes the proof that U(¢) < 0,(¢) v U,($). That U,(¢) = U(¢) follows immedi-
ately from the definitions so it remains to show that U,(¢) = U(9).

Suppose then that (@, §) € U,(¢),a+f = ¢4 Thena+f > g immediately. Since 0 ¢ H* (4),
(a-+p) (0) = a(0) +4(0) = $(0) sox(0) < ¢(0) and f(0) < $(0): thusa ¥ ¢ and f > 4. By the
definition of U,(¢), = f. Now suppose &’ < «. Then there exists j such that a'(7) < (7).
Now B(h) =1 so a(h)+1=¢,,(k) = ¢(k)+1 and then a(k) = ¢(k). Also, since dy=h,
a(h+1) = ¢(h+1) so, since h¢ H(¢), either

a(h) = ¢(h) =1 or a(h) = (k) =y $(h+1) = kypye(h+1).
In either case o' (h) < a(h)= o' (h—1) < a(h—1) so without loss of generality it may be
assumed that j < . Then

(@ +8) (j) = &' () +B(7) <alf)+A() = $(j) and o' +fk ¢
By a similar argument, §' < f=a+f§" % ¢. -
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LemMA 16-2. Suppose g€ Q, ¢ +=1 and G is any group. Then

@y(G) = (a’ﬂ)IeI ﬁm)[Qa(G), @s(G)]-

Proof. The argument proceeds by induction over ¢. By virtue of lemmas 5-1 and 16-1 it 1s
sufficient to show that, for each («, §) € U,(¢),

[Qu(G), Q)] < TI  [QG), Q(G)].

(&, € 01(e)

This is proved by a subsidiary induction over 4.
By the main inductive hypothesis,

Qﬂ(G) = [Qﬁl(G)a Q/}z(G)]

I
(ﬂ],ﬂg)({ 01(ﬂ)

and consequently, since all these subgroups are normal,

[Qu(G), Qs(G)]= TI ﬂ) [Qu(G), [Q4,(G), @ (G)]]-

(B1,82) € Uy
It now becomes sufficient to show that, if (a, £) € U,(#) and (£, f,) € U,(f) then

[Qu(C):[05(@, Qu(CN < | TT TQ:(6), Q(O)]:

(&, 0 € D
Since (o, 8) € U,(¢), there exists he H*(¢4) such that a+f = ¢,, and f(k) = 1. Since

(BisBo) € Ur(B), Bi+fo=p and =4,

This gives rise to two cases: case 1,dy = dg, = h—1and f;(h—1) +f,(h—1) > k, and case 2,
dg, = h > dy, and f(h) = 1.

Case 1,ds = dg, = h—1 and f,(h—1)+f,(h—1) = k,. Then f = f;+p, is given by
B =5 +A(0) (U<h)
=1 U=4h
=0 (> h).
There are two possibilities for the function a+f. Since a > f, d, = h. If

d,=h and ah) =k, —1

then a+f is given by
(@+p) (5) =e())+5)+A0) G <Hh)
= kh+l (J = h)
=1 (j=h+1)
=0 (J> h+1)9
and otherwise (@+p) (5) =a(G) +£:(7) +8:(J) (G <h)
=a(/)+1 (j=h)
= a(J) (7> h).

But a+/f = ¢,, so in either case ¢ is given by
#(7) = a(f) +5(7) +F.(j) (for allf).

51 VoL. 264. A,
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Now consider a-f,. Since d, = hand dg = h—1,
(a+p1) () =a(j)+£:(5) (forally),
and then d,,, = d, > hand d; = h—1so
(a-FBi+F2) () = () +A(J) +F2(J)  (forallj),
and thus a+f,+f, = ¢. Buta = f > f soa = f, = fi, and then a-+f,+f; = a+f+f, = ¢.
Thus (a+/,,f,) and (a+pf,,f;) are both members of U,(¢). But
[0.(6),[0,(G), Qp(G)]] = [Q4,(G), € (@), Qul(B)] ) ) )
< [Q4,(6), Qu(B), €p(6G)] [Q(6), @4,(G), @4 (G)],
< [@440(6), Qp ()] [Quipn(B), €pu(@)]

by theorem 3-1 (v) which completes the proof for case 1.

Case 2, dg, = h > dpg, and f3; (k) = 1. Two subcases are now considered: case 21, d, = h
and a(h) = k,,;— 1 and case 2-2, either d, =k or a (k) = k;,.;— 1.

Case 21, d, = h and a(k) = k,,,—1. Then
B() =F()+F() (forallj),

50 (@t+8) (5) = a(f) +A() +F2(7) (J<h
= k41 (J=h)
=1 (j=h+1)
=0 (j>h+1),

and a+f = ¢,, so ¢ is given by
¢(j) =a(j) +5 ) +50) G<h

= Ky —1 (J="1)
=0 (j=>h).
Now d, = h, a(h) = k,,;,—1 and f;(h) = 1 s0
(@A) (5) =) +A0) G <h
= Ky (J="h)
=1 (j=h+1)
=0 (j>h+1)
Define a function § by v(j) =) +A0G) U<h
=k —1 (J=h)
=0 (> h).

Then ¢ > a+f; so QMﬂI(G) < Q;ﬁ(G)- But d, = h and djy, < h so y+p, is given by
W5 () = a(G) +5:()+£.07) (G<h)

Zkh+1_1 (j:h)
=0 (J>h)a
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thatis, y+f, = ¢. But ¢ = f, so (¢, f,) € U,(#). Thus
[Qus(G), Qp ()] < [Qp(G), Qp(G)] < TI  [Qx(G), Q¢(G)]-

(£,8) € 01(¢)
Also a = f, = f, 50 a+fy+f; = a+f1+fy = ¢, and f;, < f so by the subsidiary inductive

hypothesis, [0uip(6). 0] < TL [Q4G), 0,G)]-
&, el
But [0,(G), [0 (), 0 (O)]] < [ 5o (6> Q1 G)] [ Qs ()5 (6]

as before, which completes the proofin this case.
Case 2-2, either d, & h or a(h) ==k, ., —1. Then

(@+B1+P2) () = (@+fy+51) () = (Bit+Feta) () = ¢44(J) = 2(§) +£:1() +£2(7)
for all j. The argument is now a simplified form of the one just given.

THEOREM 16-2. Let Q be a polyweight range, G be any group and ¢ € Q, ¢ &= 1. Then, writing

d= d¢,,
(i) f¢(d)>1, Qu(G) = “£¢[Qa(0), Qp(G)]
azf
(notice that d,, = d also since f < a < @). ’
) ot =1 %6 = T 10.(6),44(6)]
azf
dy=d—1

(and here d, = d or d—1).

Progf. The argument proceeds by induction over ¢.
(i) Using definition 16-1 (iii), lemma 16-2 becomes

Qy(G) = aJrI,;[—:gﬁ[Q“(G)’ Q4(6)],
azf

so it is sufficient to show that, ifa+f = ¢, « = f and d; < d then
[Qu(G), Q4(G)] < §+I§1¢ [Q:(5), @ (G)]-

£2¢
dg=d

Since ¢(d) > 1, d, = d and «(d) = ¢(d) > 1 so by the inductive hypothesis
Q.(G)= TI [Qu(G),@.(C)]

oa1tas=o

oa1=og
dy,=d

and so [0.(6), QO] = TI [Q.(G),0u,(G), QsG]

o1toe=a
da‘=d

< II [Qust4(G)s Qo (G [Quys4(G), R (G)]-

dg,=d

51-2
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Consider the factor [Qazw((;) w(G)]. Now f < a, < a, but d,, # djsso, by lemma 144 (11),
ot fta =atatf=atf=¢ and d,.,=d,=d

so this factor is of the required form. The same argument applies to the other factor,
completing this part of the proof.

(i1) The argument in this case is similar to that for part (i).

Finally, as an aid to determining the subgroups @, (G), lemma 11-2 may be reduced to
a more practical form for polyweights.

THEOREM 16-3. Let ¢ be a function in Q and G be any group. Then

d¢
Qu(G) = T 04,(0),
where, for each h(—1 < h < dy) the function §,, € Q) is defined by

P(J) = (B +1)0,(5) (U<h),
=9(J) U > 4.

Proof. Notice first that ¢,_;, = ¢ and ¢, = ¢+ L. By virtue of lemma 11-2 it is suflicient
to prove that ¥ > ¢ if and only if ¥ > ¢, for some ~(—1 < h < dy).

Suppose then that ¥ > ¢. Then either = ¢, in which case ¥ > ¢ = ¢@_;), or ¥y > ¢, in
which case there cxists an integer £ > 0 such that y(4) > ¢(h) and j > h=>¢(j) = ¢(J).
Supposc first that &> dy. Then y(dy) = kyy, > ¢(dg) and so by lemma 14-5 (iii)
V> (¢(d(l,)—|—1) 4y = Pag- Now suppose that & < dy. Thenfor j > b, ¥(j) = ¢(j) = b ()
and for j <k, by lemma 14-5(iil), ¥(j) = z//(/z) 5,() = (@) +1)8,(J) —=duw(y) and

7/’ ¢(h)‘
Converscly, if ¢ > ¢, for some 4 then ¥ > ¢, and clearly ¢, > ¢.

17. Polyweight subgroups of a free group as intersections of commutator subgroups

LemMa 17-1. Let Q = Q be a polyweight range, ¢ an integer = 2 and ¢8, = c8X be the function
given in deﬁnition 16 3. Then a+f = ¢d, if and only if there exist positive integers m and n such that
a —=md, and f = nd,, m+n = ¢ and either m < k,,, or n < k,,.

Proof. Suppose ﬁrst that « = md,, f = nd,, m+n = ¢ and one of m, nis < k,,,. It may be
assumed without loss of generahty that m <C n so that m < k,,,. The proof that a+§ = ¢4, is
by induction over m. If m == 1 then a+4-f =nd,+J, == (n+1) J, = ¢d, by definition 14-3. If
1 <m <k, then f> (m—1)d, =4, and d; = r = d; so that

atf=f+a
=o+(m—1)0,+45, (bylemma 14-4 (ii))
= (m+n—1)6,4+9, (byinductive hypothesis)
=¢d,.
Now suppose that a+f = ¢d,; again it may be assumed without loss of generahty that
a < fso that d, < dg. Write m — oc( ) and n = f(r). The definition of a--§ then gives rise to

two cases: casc 1, (a-+f) (j) =a(j)+/f(j) for all j and case 2, d, =d; =d say and
a(d)+B(d) 2> Ky
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Case 1, (a+f) () = a(j)+F(j) for all j. Then dy = d,,, 5 = d,; . Two subcases now arise:
case 1-1,¢ < k,,, and case 1:2, ¢ >k, .

Case1-1,¢ <k, ,. Thend

[

5, = r by lemma 14-5 (ii) so d; = r. Then
m—+n= (a+p) (r) = (¢3,) (r) =¢ sothat m<c¢ <k, .
If there exists j < 7 such that a(j—1) > k;a(j) then

(8,) (J—1) = a(j=1)+p(G—=1) > k;a()) +kE()) = ki(ed,) (/)
which contradicts lemma 145 (ii) : thus «(j—1) = £;a(j) for all j < 7 so a = md,. Similarly,
f = nd,.

Case 12, ¢ = k,,,. Then dy =d,; =r+1 and since (¢d,) (r+1) =1, f(r+1)=1 and
a(r+1) = 0. By the same argument as that given in case 1-1, a(j—1) = k;«(y) and
B(j—1) =k;B(j) for all j<r. Then d, =7, since a(d,) >k, 2(d,+1) and d, <7, so
m = a(r) < k,,, and & = md,. Also n = fi(r) = k,,, since dy = r-1 and then ff = nd,.

Case 2, d,, = dy = d and a(d)+f(d) = ky4y1- Then dy, = d, = d+1 and (¢3,) (d+1) = 1.
Thus, by lemma 14-5 (ii) and the fact that¢ > 2,d = rand ¢ > £,,,. Thus d, = d; = rso that
m < k,,., and n < k,,. Then, as before, & = md, and f = nd,.

CoROLLARY. Let Q = QX be a polyweight range, r be a positive integer and 9, - 0K, Then
a-++f =0, if and only if there exist positive integers m and n such that & = md,_,, f = nd,_, and
m—+n =k,.

Proof. This follows from the lemma since d, = &,_,9,_,.
Lemma 17-2. Let Q = QX be a polyweight range and G be any group. Then for any integers r = 0
de>1 A

mee Qus, (@) = 7:(P (@),

where §, = 0.
Proof. By induction over ¢. If ¢ = 1 the result is given in theorem 16-1 (ii). Now suppose
that 1 < ¢ <k,,,. Then d,;, = r and (¢d,) (r) = ¢ > 1 so by theorem 16-2 (i)
0 6) =TT [0.(6), 040,

azf
dﬂ=r

and by lemma 17-1 this may be written in the form

Qes,(G) =TI [Q,5,(G); Qus, (G)].

m+n=c
m=n

Then, by the inductive hypothesis,
Qs (G) = TI [1u(Pi(G)), 7a(Pr(G))]-

m+n=c
m=n

But every factor in this product is contained in y,,,,(P (G)) = 7.(P,(G)) and one of the

factors (n = 1) is [7,-1(Py, (G)); Pi(G)] = 7.(Py,(G)) 50 Qs (G) = 7.(Pr (@)
Finally suppose that¢ > £,,,. Thend,; = r+1and (¢d,) (r+1) = 1so by theorem 16-2 (ii),
0u(©) =TI 10.(6), Q)]

azf
dp v
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and by lemma 17-1 this may be written in the form

Qc&r(G): H [Qer(G)y Qn8r(G)]

m+n=c
m=n
n<kr+1

=7.(P,(G))
as before.

TureorREM. 17-1. Let Q@ = QX be a polyweight range, ¢ a function in Q and F an absolutely free
group. Then

A dg
Q¢(F) = TDO Yo (PKr(F))'
Proof. By lemma 14-5 (iii),

6=V 403,

and by theorem 15-1 @ is partially collectable so lemma 13-3 may be applied repeatedly
to yield dy
Q¢(F) = Do Q¢(r) 3r(F)'

The theorem now follows from lemma 17-2.

Comparison of the formulae of theorems 16-2 and 17-1 for particular examples of @ and ¢
yield non-trivial subgroup identities for absolutely free groups. One of these will be presented
in detail as the next theorem to serve as an example.

TueOREM 17-2. For any absolutely free group F and positive integers m and n such that m < n,
ym+n(F) nb\(ym(F)) = [ym(F)J 7’n(F)] [ym+l(F)’ 7n—1(F)] D’n(F)3 J/m(F)]
Proof. Let K = (k;)2, be the sequence k; =m, k; = 3 (j> 1) and @ = QX. Define the
function 200 Y g(0) —mrn, g(1) =2, $(j)=0 (>1).
Then clearly ¢ € Q. By theorem 16-2,

and by theorem 17-1, Qu(F) = Y ppun(F) 08 (y,u(F)).

CuaPTER IV. CENTRALIZERS
18. The main lemma

DErFiNiTION 18-1. Let A and B be normal subgroups of a group G. Then the centralizer of
Amodulo B, Z(A, B), is defined by : z € Z(A4, B) if and only if, for every a € A, [z,a] € B.

Clearly then Z(4,{1}) is the centralizer of 4 and Z(G, B) is the complete inverse image
of the centre of G/B. The following relations are elementary

Z(4, Ay, B) = Z(4,, B) N Z(4,, B), (1)
Z(4,0 4y, B) 2 Z(Ay, B) . Z(43, B), (2)
Z(4,B,0B,) = Z(4,B) 0 Z(4, By), (3)

Z(A,B,B,) 2 Z(A, B,)) . Z(4, B,). (4)
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The object of this section is to prove a lemma which makes it easy to calculate the central-
izers of shape subgroups modulo other ones within an absolutely free group.

For the remainder of this chapter it will be assumed that a fixed shape range W is being
considered, in terms of which all definitions will be made.

DErINITION 18:2. For any pair a, b of distinct basic commutators, the commutator [b<a] is
defined recursively by
(i) ifa> b then [b<«a] =[a<Db],
(i) ifa<b,b=[b;,b,] anda < b, then [b<a] = [[b,<a],b,],
(iii) otherwise [b<a] = [b, a].

LeMmA 18-1. With the notation of definition 18-2,
(1) [b<a] exusts and ts a basic commutator,
(i) o([b<a]) = o(b)+o(a),
(iii) b < [b<-a] and [b<a] <°b (se¢ definition 8-3),
(iv) [b<a] < [b,a] and [b<-a] <°[b,a],
(v) b;<b,=[b;<a] < [by,<-a]and b, <°b,= [b,<a] <[b,<a],
(vi) [by;<-a] = [by,<-a]=b, =b,.

Proof. (i) and (ii) are proved together by induction over the commutator [b, a]. Suppose
then that for all pairs a’, b’ of distinct basic commutators such that [b’,a’] < [b,a],
[b’<-a’] exists and is a basic commutator and ¢([b’<a’]) = o(b’) +o(a’).

If a > b then, by definition 6-1 (iii¢), [a,b] < [b,a] so by the inductive hypothesis
[b<«a] = [a<Db] exists and is a basic commutator and

o[(b<a]) = o([a<b]) = o(b)+0c(a).

Ifa<b,b = [b;,b,] and b, > a then [b,a] < [b,a] so [b, <-a] exists and is basic and
o([by,a]) = o(b;)+0o(a). Then

o([b<a])

l

o([[b,<-a], by])
o(by)+0(a)+0(by)
o(by)+0(by) +0(a)

(for a < b, < b, since b is basic and so s(a) < o(b,) < ¢(b,)). It must be shown that if
[b,<-a] = [¢;, ¢,] then ¢, < b, (see definition 6-2 (A)). Now a < b, < b, so there are only
two possibilities: b; = [b;;,b;,] and b, > a or else [b,<«a] = [b,,a] is basic. In the
former case [b;<a] = [[b,;<a],b,] so ¢, = b, < b, since b = [b,;, b;,, b,] is basic. In
the latter case, ¢, = b, > a by hypothesis.

Finally, if [b<-a] = [b, a] is basic the result is immediately true.

(iii) follows immediately from (ii) since o(b) < o([b<a]).

(iv) This is proved by induction over [b,a]. Assume then that for any pair a’,b’ of
distinct basic commutators such that [b’,a’] < [b,a], [b’<-a"] <°[b’,a’]. Then there are
three possibilities: if a > b then [b<-a] = [a<-b] <°[a,b] <°[b,a] by the inductive
hypothesis. If b =[b;,b,] and b, > a then [b<«a] = [[b,<a],b,] <°[b,,a,b,] since
[b,<a] <°[b,,a] by the inductive hypothesis. But b is basic so b; > b, > a and thus
[b;,a,b,] <°[b,a] by lemma 8-3. Finally, if [b<-a] = [b, a] the result is immediate. The
first statement, that [b<-a] < [b, a], follows easily from this and part (ii) of the lemma.

I
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(v) First observe that the second statement of this part follows from the first and part (ii).
The first statement will be proved by induction over b, and a ordered lexicographically,

’

the inductive hypothesis being: suppose a’, b} and bj, are three basic commutators, a’ 4= bj,
a’ = b), b} < bj and one of the conditions (a) b}, < b, or (b) b, = b, and a’ < a holds, then
[bi<a] < [by<al].
Now b, < b, so ¢(b,) < ¢(b,) and thus, by part (ii),
o([b,<a] < o([b,~>a]). (3)
The definition of [b, <-a] gives rise to three cases: case 1,a > b,, case 2, b, = [b,;, b,,] and
b,, > a and case 3, [b,, a] is basic.

Casel,a > b,. Then [b,<-a] = [a<b,| and there are twosubcases: case 1-1,a = [a, a,]
and a, > b, and case 1:2, [a, b,] is basic.

Case 1-1, 2 = [a,,a,] and a, > b,. Then
[by<a] = [a<b,] = [[a,<b,],a,]. (6)
But b, > b, so a > a, > b, also and thus
[b,<a] =[a<b,] = [[a,<b,],a,]. (7)
But a; < a so by the inductive hypothesis, condition (), [b,;<a,] < [by<a,], that is,
[a,<b,] <[a,<b,]. (8)

But ¢(a;) = o(a,) since a is basic, so ¢([a, <« b,]) > ¢(a,) and thus, from proposition (6),
1d ([by<-a]) = [a,<b,]. Likewise, from proposition (7), ld ([b;<-a]) =[a,<«b,] and
proposition (8) becomes 1d ([b;<-a]) < 1d ([b,<-a]). This, together with proposition (5)
implies that [b,<-a] < [b,<-a].

Case 1-2, [a,b,] is basic. Then

[b,<-a] < [b;,a] by part (iv)
< [a,b,] bylemma 81

= [b,<a].
Case 2,b, = [b,;, b,,] and b,, > a. Then [b,<«a] = [[b,,; <-a], b,,] and, since b, is basic,
1d ([by<-a]) = [by, «a]. (9)

The definition of [b;<«a] now gives rise to three subcases: case 2-1, a > b,, case 2-2,
b, = [b,;,b;,] and b,, > a and case 2-3, [b,, a] is basic.

Case 21,2 > b,. Then [b, <-a] = [a<-b,] and there are two further subcases: case 2:1-1,
a = [a,a,] and a, > b, and case 2:1-2, [a, b,] is basic.
Case 2:1'1,a = [a;,a,] and 2, > b,. Then

[b,«a] =[a<b,] = [[a,<b,],a,]. (10)
By the assumption for case 2, by, > b,, > a and, for case 2-1:1, a, > b,. Thus

b, >a>a,>b,.
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BASIC COMMUTATORS 399
By the inductive hypothesis, condition (), then
[b,<a] < [b, <a]. (11)
But a; < a and, by the assumption for case 2, a < b,. Thus by the inductive hypothesis,
condition (a), again [a,<b,] < [a<b,]. (12)
Combining propositions (11) and (12) and using [a<b,] = [b, < a],
[a,<b,] < [b,,<a]. (13)

Since a is basic, a, > a, so [a,<b,] > a, and then from proposition (10),
Id ([b,<a]) = [a,<b,].
Combining this with propositions (9) and (13) yields
Id ([b;<a]) <1d ([by<a])
and this, together with proposition (5), implies that [b,;<a] < [b,<-a].
Case 2-1-2, [a, b,] is basic. In this case [b,<«a] = [a,b,] so
1d ([b,<a]) = a < [by,<a] =1d ([b,<a])
and this, with proposition (5), implies that [b, <-a] < [b,<a].
Case 2:2, b, = [by;, b;,] and b}, >> a. Then [b, «<a] = [[b;; < a],b,,] and so
d ([b, <-a]) = [by;<a]. (14)
Now b, = [b,;,b;,] so ¢(b,) > 1 and b, is basic so Id (b,) = by; and tr (b,) = b,,. Thus,
since b, < b, definition 6-1 gives rise to three subcases: case 2:21, o(b;) < o(b,), case 2:2-2,
b,; < b,, and case 2:2:3, b;; = b,; and b, < b,,.
Case 2:2-1, o(b,) < d(b,). Then, by part (ii),
o([b,<a]) = o(b,) +o(a) < a(by)+0(a) = o([b,<a])
so [b;<a] < b,<a].
Case 2-2:2, b,; < b,;. Then by the inductive hypothesis, condition (a),
[bi<a] < [b, <a]
and this, together with propositions (4), (9) and (5), implies that [b, <-a] < [b,<-a].
Case 2:2:3, b,; = b,; and b;, < b,,. Then
[b,<a] = [[by;«a],by,]
= [[by<a], by,]
< [[by<a], by]
= [b,<a].
Case 2-3, [by, a] is basic. Then [b,<«a] = [b,a] so
Id ([b,<a]) = b,. (15)
Now b, < b, and definition 6-1 again yields three subcases: case 2:3:1, o(b;) < a(b,),
case 2-3-2, b;; < by, and case 2:3:3, b;; = b,; and b, < b,.

52 Vor. 264. A.
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Case 2-3-1 is the same as case 2:2-1.
Case 2:3-2, b, < b,,. Then by the inductive hypothesis, condition (a),

[by;<a] < [by < a], (16)
and since [b,, a] = [b,,, b,,, a] is basic,b;, < a.Ifb,, = a then [b,; <-b,,] = [b,;; <-a] and
if b, < a then by the inductive hypothesis, condition (a), again

[by<by] = [by<by] <[a<by,] =[b,;«2a]
so in either case [b;; <-b;,] < [b;, <-a], which with proposition (16) gives

[by,<bypp] < [by <-a].

But b, = [b,,, b,,] is basic so b, = [b; <~ b,,] < [b,;<—a]. This, together with propositions
(15), (9) and (5), implies that [b,<a] < [b,<a].

Case 2:3:3, b;; = b,; and b, < b,,. Now [b,,a] is basic so b, <a. If b, =a then
[by, <-by,] = [by, <a] and if b,, < a then by the inductive hypothesis, condition (a),

[0y <-by] = [by<by] < [a<by] = [by,<a]

so in either case [by; < b,,] < [by;<a]. (17)
Butld ([b, <-a] = b, = [b,; <~ b;,] = [b,; < b,,] which together with propositions (17) and
(9) implies that 1d ([b;<-a]) <ld([by<a]). Further tr([b,<-a]) =a <b,, by the

assumption for case 2 and b,, = tr ([b,<-a]) so, using proposition (5), [b;<a] < [by<-a]
again.

Case 3, [b,, a] is basic. Then [b,<a] < [b;,a] < [b,,a] = [by<a].

(vi) follows immediately from (v).

LemMMA 18:2. Suppose X is an expression which is essentially <° some commutator ¢ (see definition
1-4) and D: x—y. Then'y s also essentially <° c.

Proof. By checking the various parts of definition 8-1. For parts (i) to (xi), E(y) = &(X).
For part (xii), £(x)={[c,b,al}, Z(y) ={[b,a,c], [c,a,b]} and [b,a,c] <’x and
[c,a,b] <°x by lemma 8-3. The remaining parts now follow easily.

Lemma 18-3. Suppose a and b are two distinct commutators. Then D: [b,a] —[b<—a]cu where
u is a (possibly empty) expression which is essentially <° [b<—a)] and e =+ 1.

Proof. (i) First it is shown that if 2 and b are basic commutators and a < b then
D: [b,a]—>[b< alu where u is a (possibly empty) expression which is essentially
<9 [b<-al], this being done by induction over [b, a]. Either [b, a] is basic, in which case
[b<«a] = [b,a] and D: [b,a] - [b<a] trivially, or else b = [b,, b,] and b, > a in which
case [b<a] = [[b,<a], b,]. But then, by definition 8-1 (xii) and (i),

D: [b,a]—[b,,a,b,]"1[by,a,b,]
'%[bl; a, bZ] [sz a, bl]_l° (18)
By the inductive hypothesis since b, > a, D: [b,,a]—[b,<«a]u, where u, is essentially

0
<*[Bpeal. Lhen D: [by,a, b1 [[by<a] uy, by]

_>u2> (19)
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BASIC COMMUTATORS 401
where ' u, = [[b,<-a], b,][u,, b,] (20)
and [u,b;] is essentially <°[[b,<-a],b,]. (21)

Since b is basic, b, > b, > a so ¢(b;) = ¢(b,) = ¢(a) and then

7([[by<-a],b,]) = o(b,) +0o(a) 40 (b))
= a(b,)+0(a) +o(by)
— o([[b,<al, b,]) (22)
by lemma 18-1 (ii) and definition 2-1 (v),
1d ([[b, <2, b,]) = [b, <-a] (23)
and Id ([[by<-a],b,]) = [b,<-a] or b,. (24)

But b, >b,>a also implies, by lemma 181 (v), that [b,<-a] <[b,<-a]. Since
b, < [b,<-a], this, with propositions (22), (23) and (24), shows that
[[b;<-a],b,] <°[[b,<-a],b,] = [b<a],

$0, using propositions (20) and (21), u, is essentially <° [b<-a]. By propositions (18) and
(19) and the inductive hypothesis,
D:[b,a]—[[b,<a]u,,b,]u,
—[[b,<-a], b,] [u,, b,] u,
= [b<-a] [u,, b,] u,,
where u, is essentially <°[b,<-a]. But then
[u;, b,] is essentially <°[[b,<-a],b,] = [b<-a].
(ii) Itremains to prove the lemma when a > b. In this case
D:[b,a]—~[a,b]"!> ([a<-b]u)-!
by part (i), where u is essentially <°[a<-b]. But [a<-b] = [b<-a] so
D:[b,a]>u![b<«a]-!—>[b<a]lul
Lemma 18-4 (The main lemma). Let X = b{1 b4z ... bf* be a basic expression other than 1 and

let b, be the maximum member, under the order <°, of the set B(X) = {b,, b,, ..., b, }. Let a be a basic

commutator other than b,. Then ,
4 D: [x,a]—>c{'c}2...c],

a basic expression other than 1, and if C_ is the maximum member under <<° of the set {c,,c,, ..., ¢
then ¢, = [b,<-a] and y, = 4+ f,.
Proof. Using lemma 18-3, we have
D: [x,a]>[b,, al/ [byal/* .. [by, a]
= ([by<-afou,)? ([by<-aleuy)/ ... ([by,<a]*u,)s

> [by<al*uf![by<-alsufs... [b,<als sruf,

i

52-2


http://rsta.royalsocietypublishing.org/

. \
A 2

THE ROYAL A
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

JA \
,’,/ A

THE ROYAL A
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

Downloaded from rsta.royalsocietypublishing.org

402 M. A. WARD

where, for each 7, u, is a (possibly empty) expression which is essentially <° [b;<-a] and
hence by lemma 18:1(v) essentially < [b,<a], each ¢ =41 and for each i=7,
[b,<-a] <°[b,<a]. But then, for each ¢ 4=7,

D: [b,<-aeufi>y,
whére ¥, is a product of basic commutators, all of which are <° [b; <-a] by lemma 18-2, and
D:ubr—z
a product of basic commutators all of which are <°[b,<-a]. Thus

D: [Xz a] ->YI YZ L yr-—l[bré‘a]erﬂrzyr+IYr+2 Yk:

which is a product of basic commutators all of which, apart from the factor [b, <-a]®#r, are
<% [b,<-a]. The lemma follows.

19. Applications

DEerintTION 19-1. Let @ and W be two subsets of a shape range W. Then V' — @ s the set of all
minimal elements (under the coarse order) of the set

A DL} > P

If o and f are elements of W and {f}—{a} contains exactly one element, then this element is denoted
f—a. The element f © o is defined to be the minimum element (under the fine order) of the set

At a41= .

From this definition and definition 2-2 it follows immediately that ¥'— ® may be defined
by its properties:

i) ®+A>Wifanonlyif A >V —® and

(ii) ¥'—®is totally unordered.

The element f © « may be defined by its property that a4+1 = fifand only if A = f o«
and, provided the element f—« exists, it may be defined by its property that o+ A > fif and
only if A > f—a.

TuEOREM 19-1. Let @ and V' be subsets of a partially collectable shape range W. Then, if F is an
absolutely free group of rank at least 3,

Z(Wo(F), We(F)) = W _o(F).

Proof. Let p: A~ F be afree description of I Suppose z € Wy _q(F) and a € Wy (F). Then
there exist z, ae A such that

zp=2z, ap=a2a, 2(z)>VY—-D and 2(a)>O.

Then X([z,a]) > ¥ and so [z, a] € Wy (F). This proves that Wey_o(F) < Z(Wo(F), We(F)).

Now suppose z ¢ Wy_o(F). Then, since W is partially collectable, there exists a non-
negative integer ¢ and a basic expression z = b;'bf2...bfrec B, n ﬁ\}f‘Aq, other than 1
such that zp = z modulo y,,,(F) . We,o(F). It may be assumed that ¢ has been chosen as
small as possible so that wt (z) = ¢. Let b, beAthe maximum member, under the order <0,
of the set E(z) = {b,b,,...,b,}. Since ze By 4, X(b,) 3 ¥'—® and so ®+2(b,) » T
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Thus there exists ¢ € @such that {¢}+ 2 (b,) » V. But Fis of rank at least 3,50 by lemma 12-3
there exists a basic commutator a of shape exactly ¢ in A which is distinct from b,. Then,

by lemma 18-4, D: [z,a] >y = c]'cjr... ¢,

a basic expression other than 1, and there exists an integer s (1 < s < /) such that
¢, =[b,<-a] and y,=4p,F0.
Let wt (a) = d. Then wt ([z,a]) = ¢+d so yp = [z,a]pmoduloy,, ,,,(F) by theorem 81,
corollary 4, and thus yp = [z, a] modulo?y,, ., ,(F) . We(F) where a = ap. Let y’ be the basic
expression made from y by deleting all commutators of weight = ¢+d+1 or shape set > V.
Then y'p = [z,a] moduloy,, 4, (F) . We(F) also and y’ € B, n By. But
wt (¢;) = wt ([b,<-a]) =c¢+d
and 2(e,) = {(c)y ={6(b,)+0(a)} = {g}+2(b,) > ¥

so ¥’ contains the factor ¢?s and is thus non-trivial. By theorem 9-1 (D) (iii) then

y'p ¢7¢+d+1(F) . W‘F(F)
and thus [z, a] ¢ ¥,,4.1(F) . We(F) so that [z, a] ¢ We(F).Buté(a) = g€ ® so ae Wy(F) and
thus z ¢ Z(Wy(F), We(F)).

CoRrOLLARY 1. Let a and [ be elements of a partially collectable shape range W and suppose that
the element f— a exists. Then, if F is an absolutely free group of rank at least 3,

Z(W(F), Wy(F)) = Wj_o(F).
Proof. Substitute ® = {a} and ¥ = {f} in the theorem.
COROLLARY 2. Let o and [ be elements of a partially collectable shape range W. Then, if F is an
absolutely free group of rank at least 3,
Z(W, (), Wy(F)) = Wy o o(F).
Proof. Translate corollary 1 according to the metatheorem of § 2.

Lemma 19-1. Let Q = QX be a polyweight range. Then, for any two elements o and f of Q, the
element f— a exists and may be computed as follows:
(1) ifaxfthenf—a =1,
(i) ¢f o} f =00 then f—a =00 and
(iii) if a 3 f == 00, define a function v from the non-negative integers to the integers by

v(g) =F0)—a(y)  (BU) +1)
=0 (B(5) = 1).
Then f—a= V v(r)d,
»(r)>0

the join of the functions v(r)d, as given in deg‘inition“M'?, (ii) for those values of r for which v(r) > 0.

Proof. The definition of §f—« given in parts (i) and (ii) of the lemma is obviously correct.
It must now be shown that the definition given in part (iii) makes sense—that f—a is not
being defined as the join of an empty collection of functions. To do this it is sufficient to show
that there exists 7e w such that v(r) > 0. Since « 3} f, there exists j €  such that () < £(J).
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If f(j) &= 1 then 7 = j is the required integer, otherwise #(j) = 1 and a(j) = 0so

BU—1)=k;>a(j—1) and r=j-1
is the required integer.
To show that the definition of f—« given in part (iii) is correct, it is sufficient to show that

with this definition ot E fr b > f—a.
Suppose then that £ >> f—a. Then for each j e o,

(@+£) (4) = «(h) +£(7)
= a(g)+(f—a) (J)
= a(j)+$§§){1’(f) 5,(J)}

= a(g)+v(7)0;(J)

—a(g)+v()).
If B(j) 1 then v(j) =£(j) —a(y) so (a+§) (j) = a(f) +v(j) =£(). If f(j) =1 then
(¢4§) (j—1) = f(j—1) = k; and then (a+§) (j) =1=/p(y), so in either case

(@+8) (1) = B()).
Thus a+§ > 4.

Conversely, suppose that a+4& > f. Then («+§) (j) = f(j) for all j € . Then

() +E(J) = (@+8) (4) = £())

so that £(j) = f(j) —a(j) = v(j) unless d, = d; = j—1 and a(j—1)+£(j—1) = £; in which
case (a+¢) (j) = 1sothatf(j) = 0or 1. Then v(j) < 0soin either case £(j) = v(j). Then

V() >0=§(j) > 0=5<d;
so by lemma 14-5 (iii), E= v £(7)9;

]<d£

> vV v())d;
v(j)>0

=f—a.
LeMMA 19-2. Let W be a shape range such that f— o exists for every pair a, f € w. Then
(1) For any subset V' and element ¢ of W, V' —{@} is equivalent (under the pre-order <) to the
set{p—¢: eV :
(i) For any subsets ® and W of W, W — @ is equivalent (under the pre-order <) to the set

V{¥'—{¢}: g D}.
Proof. (i) Let {A} >V —{¢}. Then {¢+1} = {¢}+{A} > ¥ so there exists € ¥"such that
¢+A>=9. Then A > ¢y — ¢ so {A} > {V'—¢: € ¥}: but this argument is reversible, and thus
WV >{y—4:4e¥
(ii) Let {1} >¥Y—®. Then ®+{A} >Y so, for any ¢e®@, {#}+{} >V and thus
{4} > ¥ —{4}. Since this is true for any ¢ € ®, {1} > V{¥—{¢}: ¢ € ®}. Conversely, suppose

that {A} > V{¥"—{¢}: ¢ € ®}. Then, for any ¢ e ®, {1} >V —{¢} so {A+¢} = A} +{4} > V.
But, since this is true for any ¢ € ®, ®+{A} > ¥ and thus {1} > ¥"—®.


http://rsta.royalsocietypublishing.org/

THE ROYAL A

PHILOSOPHICAL
TRANSACTIONS

THE ROYAL A

PHILOSOPHICAL
TRANSACTIONS

I

SOCIETY

I B

SOCIETY

OF

OF

Downloaded from rsta.royalsocietypublishing.org

BASIC COMMUTATORS 405

Finally two theorems are presented as examples of the application of this theory.

THEOREM 19-2. Let G = F(P A N,) where Py, is a polynilpotent variety of lengthr > 2,¢ > 1
and the rank of the relatively free group G is at least 3. Then the centre of G 15 y,(G).

Proof. It is sufficient to prove that, if F'is an absolutely free group of rank at least 3, then
Z(F, Py (F) 711 (F)) = Py (£) 7, (F).

Corresponding to the sequence K, form the polyweight range @ = QX.Then Q, (F) = Py (F)
and Q,\HI(F ) =7,.(F) by theorem 16-1 and the corollary to theorem 16-2. Thus
P (F).9,41(F) = Qo(F) where ® = {5,,A,,,}. By theorem 19-1 and lemma 19-2, since
F = Wy, (F), it is now sufficient to show that §,—1 =4, and 4,,;—1 = A,.

Since r > 2, 1(r—1) = 0 so, defining » as in lemma 19-1, v(r—1) = 0,(r—1) = k,. Thus

0,—1= V v(j)o; »v(r—1)8,_, =k24,_, =9,
»(j)>0

But by definition 19-1, §,—1 < d,. Thus J,—1 = J,.

Now A,,;(0) =¢+1 and A,,,(1) = 1 so, redefining v to calculate A, ;—1, v(0) = ¢ and
v(1) = 0. Thus A, ., —1 =¢d, = A,

COROLLARY 1. With the hypotheses of the theorem, the upper and lower central series of G coincide.

CoROLLARY 2. Let G = F(*By,) where By is a polynilpotent variety of length r > 2 and the rank
of the relatively free group G is at least 3. Then the centre of G s trivial.

Proof. This can be proved by a simplified form of the argument used to prove the theorem
or alternatively inferred directly from the theorem and the fact that G is residually nilpotent.

THEOREM 19-3. Let G = F (P, VN,) where Py, is a polynilpotent variety of lengthr = 2,¢ > 1
and the rank of the relatively free group G is at least 3. Then the centre of G is Py (G) ny,(G).
Proof. Tt is sufficient to prove that, if F'is an absolutely free group of rank at least 3, then

Z(F, P, (F) 0 Y51 (F)) = P (F) 0 9,(F).

This follows immediately from theorem 19-2, corollary 2 and equation (3) of §18.
It will be observed that the restrictions on 7 and ¢ assumed in these theorems are no more
than non-triviality conditions. If = 1 then B, is a nilpotent variety.

AprpPENDIX I. NON-COLLECTABILITY

In this appendix the fact stated in § 13 is established : that if« and f are elements of a shape
range W, ff finely dominates « and F is an absolutely free group of rank at least 3, then there
exists an element in W, (¥) which cannot be described by a basic expression modulo Wy (F).

If b is a basic commutator other than g, definition 18-2 yields a simpler definition of
[b<8,], still by recursion over b:

(i) [8;< 8] = [8:,80] and
(ii) Ifb = [b,, b,] then [b<-gy] = [[b,<&,],b,].

It is now necessary to generalize this idea slightly in two ways.
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DeriniTiON I-1 (A). If b is a basic commutator other than 8, and n a non-negative integer, then
[b<-ng,] is defined recursively over n:
() [b<0g,]—b
(i) [b<ng,] = [[b<(1—1)g,]<g] (n>0).
(B) If b is a basic commutator other than 8, then the expression [b <85 is defined recursively
over b:
1) [8:i<8']l=1[8:58:"],
(ii) [[by,by]<85'] = [[b;<g7'],bs] (by8,)
= [by, by, 85| (b, = 8,).
The following properties are elementary
(i) [b<mng,] may be defined alternatively by recursion over b by [, < ng,] = [8,, 78]
(see definition 7-3) and [[b,, b,] < n8,] = [[b,<718,], b,].
(if) [[b<mgy] < ngy] = [b< (m+n)g,].
(iii) o([b<ngy]) = c(b) (+1)*and o([b<-g;!]) = o(b)+1.
(iv) If [b, g,] is basic, then there exists a generator g, == g, and an integer n > 0 such

that b = [gn ngo]
DEerintTION I-2
(i) If a and b are commutators, write b =af, forall v > 1, u,(b) = p;(a) (see definition

K . .
12-1) and b > a if moreover there exists r = 1 such that ,ur(b) > u.(a).
(i) If ais a commutator and X is an expression, write X ayfxis essentzally aadx>a
if X is essentially > a.

. ro, s, . . . . .
Notice that = is a pre-order, > is not the corresponding strict relation in part (ii), the
numbers of times @ and b mention g, are irrelevant in part (i) and that part (ii) is a bona fide
extension of part (i). The following facts are elementary:

. #
(i) Ifais a commutator then a > a.
(ii) If a is a basic commutator other than g, and 7 is a non-negative integer then

[a< ngo] a and [a<gq l] a but the corresponding strict relation holds in neither case.
(iil) x X2 a if and only if both Xl a and X2 a and x,X, < aifand only if both
both x, Sa and X, La.
( v) If x;, > a1 and X, > a2 then [x,,X,] > [al, a,] and if, moreover, either x, < a, or
X, < a, then [x,X,] 5 [a;,a,].

LemmMa I-1. Suppose ¢ is a basic commutator other than 8, and n is a non-negative integer. Let
p: A—G be any description of a group G. Then there exists a (possibly emply) expression Z such that

(i) [le<ngol<85'lp = ([[c< (n+1)8o]«85'] " [e< (n+1)8]'2) p and
i) z>c.
Progf. The following easily checked group identity will be used: if ¢ and b are elements
of a group then [a,b-1] = [a, b,5-1]"" [a, b] L.
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If ¢ == [g,,kg,] for somc non-negative integer £, then [[c<-ng,] < 8y1] == [€, 78, 8¢ ']
and, using the identity just mentioned, we have

[c,n8,, 85 '] = (¢, (n+1) 80, 851171 [€; (n+1) 8] 1) p
= ([[c< (n+1) 8]« 8517 [c<=(n+1) 8] 1) p,

which is of the required form with z empty.
The proof may now procced by induction over the weight of ¢, assuming that ¢ = [¢), ¢,],
C, -+ 8, and the result is true for ¢;. Then

[[c<ngo)<go'] = [[[c)<-ngo] &5 ']; C.]-
But then, by the inductive hypothesis,
[[c) < ngo] < 87']p = (d7'e"z)p,
where d = [[¢, < (1+1)8,]<87'], € = [¢,< (n+1)g,] and 2, > ¢,. Thus
[[cng)«85']p=[d~'e7'z,,¢,]p
= ([d~'e7!, ¢;]2y)p
where z, = [d~'e"!, c,,2,] [, C,]. Then
[dle, ;2] 5 [21,)] > [en ] = ¢
SO Z, < ¢. Then
[[c<-ng,]«<g5'1p == ([d7},c] [d7],cp e ] [e7}, €,]25) p
= ([d7,¢c,] [e7!,¢,)z5) p

where 2, = [d, e 1] [[d), ¢y, [0, 6] 2.

But [d~1, ¢,] 4 c,. Further, since ¢ = [c,, ¢,] is basic, €, = g, so there exists 7 > 1 such that
4(c) > 0. Then a(d)=4(c) >0 so 4([d",¢;)) > 4(c,). Thus [d-,c;] > ¢, Also
e = [c,< (n4+1) 8] £ ¢, 50 [d~!, ¢, e71] 5 c. Thus z; > c. Finally
[[c<ngo] <85 1p = ([d,c,] ! [c,,d,d7"]] [e,c,] 7! [cy, €, €71] 24) p
= ([d, c,] ' [e, 5] 7" z4) p,
where 2, = [c,,d, d"1] [[c;, d,d1], [e,€,) 1] [Cpr €, 071 ] 24

and as before z, £ ¢. The lemma is now proved since
[d, ;] = [[[c; < (n+1)80] <851, €;] = [[e < (n+1)8o] < 85]
and [e,c,] = [[c, < (n+1) 8], o] = [C<—(n+1) 8]
LemMa I-2. If ¢ is a commutator, X an expression, X L cand E: X->Yy then'y <e
Proof. Check the various parts of definition 9-1.

LemMA 1-3. Let € be a basic commutator other than 8, and let p: A— G be any description of a
group G. Then to each non-negative integer n there exists an expression

xn = un[[c A ngO] < gO— l](— o Vs

Vor.. 264. A.
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either v, or v, possibly being empty, such that
(i) x,p=[c<85']p,
(ii) w,is empty and if n = 1, u, is of the form

u, =b/bf2... b e B, ,
where k = n and o, = o(¢) (+1)**1, and
ceey s . Y
(iii) ¢f v, is non-empty, then o(v,) = «, and v, > c.

Proof. By induction over n. If n = 0, [[c<-08,] <-85'] = [c<-g;!] and the lemma is true
with both u, and v, empty.

Now suppose the result is true as stated for #. The corresponding result is proved for n4 1.
By lemma I'1, there exists an expression z, (possibly empty) such that

[[e<ngo]<«g7']p = ([[c< (n+1) 8] <85 ] [c< (n+1) o] 2))p
and z, Le
Hence [c<g;1]p = x'p where

X' =u,([[c<(n+1) 8] <851 [c< (n+1) 8] ' 2,) Vv,

Suppose 7z is even. Then
X' =u,[[c«(n+1)8,] < 87" [c< (n+1) 8] 2V,

and E:x'—>u,[c< (n41) o] [[C< (n+1) 8] < 85117 2,2, V,,
where zy = [[[e<(n+1) 8] < 85"] 7, [e< (n+1) 8] 7]
and then z, £ cand 0(z,) > ,,;. Then

Eix'—>u,[[c< (n+1) 8] <8511 2,2, v, [C< (n+1) 8] 12,
where zy = [[[c<(n+1) 8] < 85 '] 7!, 2,2, V,],
and then z, < ¢ and 0(Z3) = .. But now, since 0(2,2,v,) > a,, E: 2,2,v,—>Wz, where

either w or z, may be empty, but when they are not, w ¢ B o(w) =a,and ¢(z,) >«

Un+12 n+1°

Further w & c and z, & ¢. Thus
E: X u,[e < (141) 8] Wz [[e< (n+1) g5 < g51] 2,
It is now shown that
E: X' >, wzyz,[[e< (141) 8,] < 85 11124,
where w'eBj  but w =1, ¢(W') >«, and z; may be empty but when it is not
0(zs) = a,,., and z, e Ifwis empty or 1, this is true with w’ = [c< (n-+1) g,]~! and z;
empty. Otherwise, suppose w = a,71a,72... a,7. For each i (1 <i < 1), a, e by definition

I-2 (i1) since w < ¢. Thus for each i there exists 7 such that 1 <r < 7and g,(c) < z.(a,). But
#([C< (n+1)8o]) = p.(c) and s0 [c < (n+1) g ] + a,. Thus [c< (n+ 1) 8,] is not the same
as any of the commutators a; (1 <7< ). But[c< (n+1)g,] is a basic commutator so there
exists an integer ¢ (0 < ¢ < &) such that

W =a;"a,”2. . aY[ce (n+1)g ] 1a,, v a,m
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is a basic expression. But we B, so each a; is a commutator of shape <a,,;. Also
o([c<(n+1)gy]) =, so W eB, .Butw = 1 since it contains the non-trivial factor
[c< (n+1)8,]. Again 0(W) = a, so each a; is of shape > «, and ¢([c< (n+1)8,]) = a, s0
where 0(z;) > o([c< (n+1)8,]'W)+1 = «,+1 and since z; is a product of commutators
of [c<(n+1) g,]~! with other basic commutators, z; e
Finally, writing u,,;, = u,w’ and
Vi1 = 2524|252y, [[C < (n+ 1) 8] < 871] 1 25,
Erx! >, [[e< (n+1) 8] <8517V,
and u,,, and v, are of the required form.

The argument when # is odd is a slightly simplified version of the one just given.

TuroREM I-1. Suppose o and [ are elements of a shape range W, B finely dominates o and F is an
absolutely free group of rank at least 3. Then there exists an element in W, (F) which cannot be described
by a basic expression modulo Wy(F).

Proof. Let p: A—F be a free description of F, so that the number of generators of A is at
least 3. Then by lemma 12-3 there exists a basic commutator ¢ of shape exactly « in A. It
is now shown that [c< g7 !]p cannot be described by a basic expression modulo W (F), for
suppose that it can: then there exists a basic expression

w=a;”"a,”2...a,m,
such that [c<g5']p = Wpmodulo W (F). Then, by lemma I-3, there exists an expression
Xpi1 = Uypi[[e< (n+1) 8] < 8o 1]V v, 4,
such that X, ;p = [c<g;']p where u,,, is a basic expression of the form
u,,, =bAb2.. . bfr (k=n+1) and (v,.,) = a,-
Also o([[e<(n+1)g]<85']) = %pr1>
nia)
But f dominates «, so «,,; < f. Now there exists 2(0 <j < n) such that
w =a,”a,2...a,7cB

so X, 10 =4, pmodulo

On+1’

and O (@p 4By 7L AT =

Then w'p = [c<g5']p = u,, ,pmoduloW, (F) and so, by the basis theorem, w’' =u,,,,
and so z = k. Butit has already been observed that 2 < nand £ > n-1: thisis a contradiction.

- AppeNDIX II. TERMS AND SYMBOLS USED IN THE TEXT
Symbols in more or less common use

Logic

= logical implication. <> logical equivalence.
Set theory

For any property & that the elements of a set 4 may have, {x: xe 4, 2 («x)} is the set of all
elements of 4 for which #(x) is true. When the set 4 is clear from the context, {x: £ (x)} may
be written.
53-2
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ae A means ‘ais a member (element) of 4°. Occasionally a4, b € 4 is used asshorthand for
‘aeAand be A. a¢ A means ‘ais not a member of 4’.

{a} is the set whose only member is 4, {a, b} the set whose only members are @ and b, and
sO on.
()R, (k)i (%3),<, etc., are finite and transfinite sequences: {x;}i_,, {x;};iZ}, {;}; <, are
the corresponding sets.

An B and AU B are the intersection and union respectively of the sets 4 and B. The
intersection of a family of sets is written a 4;, n4;, N4, etc., and the intersection of

i= i<t i€1

a set &/ of sets is written NsZ. In a similar fashion the symbol U is used for unions and
A and V for meets and joins in a complete lattice.

A = Bmeans ‘Aisasubset of B’. 4A— Bis the complementof Bin 4, theset {x: x € 4, x ¢ B}.
2 is the empty set.

¢: A— B indicates that ¢ is a function mapping the set 4 into the set B. Exceptions are
the notations d: Xy, D: Xy, e:X—Yy and E:X->y which are given special definitions
in §§ 8 and 9.

|4| is the (cardinal) number of members of 4. w is the set of non-negative integers and
the first infinite ordinal.

m|n, for integers m and n, means ‘m divides n’.

Group theory

With the exception of the underlying group of a Lie ring, groups are written multi-
plicatively. The identity is denoted 1. [«, y] is the element x~'y~1xy.

A < B means ‘4 is a subgroup of B’. If 4 is a normal subgroup of B, the factor group
is denoted B/A. ‘

A =~ B means ‘4 is isomorphic with B’.

AB is the subgroup generated by the normal subgroups 4 and B.

@

The subgroup generated by a family of normal subgroups is denoted T{ 4,114,114,
etc. i= i<T iel

[4, B] is the subgroup generated by all commutators [a, b] where ae 4 and b e B: see
also definition 1-5.

v,(G), for positive integers ¢, are terms of the lower central series of the group G, defined
by 7,(G) = G and 7,(G) = [7,,(G), G] for ¢ > 1.

07(G), for non-negative integers n, are terms of the derived series of G, defined by
3%(G) = G and "(G) = [ 1(G), 0»~1(G)] for n > 0.

{,(G), for non-negative integers n, are terms of the upper central series of G, defined by
{o(G) = {1} and {,(G) is the complete inverse image of the centre of G/¢,_,(G) for n > 0.

Varieties

The language and notation concerned with this topic follows Hanna Neumann (1967).
In particular,

F,, for some cardinal 7, is an absolutely free group of rank 7. /" usually denotes a free
group of arbitrary rank.

Varieties themselves are distinguished by Gothic script, B, 9, and so on. The
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intersection and join of the varieties W and B are denoted A A B and A v B respectively.
F_(B) is the free group of rank 7 of the variety B (a B-free group).

I, always denotes the variety of all groups which are nilpotent of class ¢. The notation
associated with polynilpotent groups and varieties is described precisely in definition 14-1.

Algebras

The word ‘algebra’ is to be construed in the sense of “universal algebra’ asin Cohn (1965).
Language and notation concerned with algebras follow this work.

Symbols defined in the text

References, unless otherwise stated, are to definition numbers.

A 11
Boc? ﬁa) ﬁd)) B(c) 6-2
C 1-4
d:x—>y, D:x—>y 81
dy 14-2
e:xX—>y, Eix—>y 91
G= {gi}i<1 I-1
g 16
ht page 346
H* (§), H(9) 16-1
K, K, ‘ 14-1
Id 6-1
N- 1-3
P, P, (w) 75
P (G), B, 14-1
Q, £, Qg etc. 14-2
S(p) 7-5
tr 6-1
U(g), U(9) | 51
U,(9), Us(9) S 1el
wt 1-3
W 2:1
W, W, W, 31
;nca,Adcme«n 3-2
MW, W, Wo, 3-2
X, 7-4
Z(A, B) 181
9,, 19, 14-3
€ ) 1-1

>

N

10

QTR

IS

, I, etc.

\.pqb
u)
N

D
=+
o

-

+WV=AANE = mON T
Ve A A
°2
o

TN
+
ja—

~—
S

-, e

A,V

[b, ma,, nya,, ..., n.a,]
[b<a]

[b<-ngy], [b<g51]
[4, B]

b+

¢+h, ¢‘h

7-5

1-1

121

1-1

1-4

14-2

1-6

2-3

1-1

11

1-1

2:1, 14-2

1-1

1-3, 21, 14-2
1-3, 21, 61, 14-2
2:1, 2-2, 14-2
83

I-2

2:1,2-2, 14-2
9-2

191

2.1, 2-2, 14-2
7-3

18-2

I1

1-5

7.2

161
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Terms defined in the text

algebra of expressions 1-1 incomparable page 351
basic commutator, expression 6-2 inversion 1-1
basis theorem theorem 9-1 leading part 6-1
B-order 7-1 length 8-2
centralizer of 4 modulo B 181 Lie ring 10-1
coarse order 2-1,14-2 Mboébius function page 344
coarse shape 2-3 multiplication 1-1
commutation 1-1 number of times ¢ mentions g, 12-1
commutator, commutator set 1-4 partially collectable 13-1
commutator subgroup page 353 partial well-order page 351
comparable page 351 polycentral series 14-1
compatible 7-2 polynilpotent 14-1
depth 14-2 polyweight 14-2
describable algebra 1-5 product of commutators 8-2
description 1-6 shape range 21
dominate 9-2 | shape set 23
empty expression page 360 shape subalgebra 3-2
essential property 14 totally unordered page 351
expression 1-1 trailing part 6-1
fine order 2-1, 14-2 type 14-1
fine shape 23 W-basic commutator, expression 6-2
free description 1-6 weight 1-3
height page 346 W-ordering 6-1
ideal 1-5 (<)-basic commutator 7-1
identity 1-1
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